

Energy-aware Thread and
Data Management in
Heterogeneous Multi-core,
Multi-memory Systems

C. Su

December 16, 2014

LLNL-TH-665255

Academic Disclaimer

The author wrote this dissertation in support of requirements for the degree Doctor of Philosophy in
Computer Science at Virginia Polytechnic Institute and State University, Blacksburg, Virginia. The
research is funded in part by the LLNL Graduate Scholars Program, and is not a deliverable for any
United States government agency. The views and opinions expressed are those of the author, and do not
state or reflect those of the United States government or Lawrence Livermore National Security, LLC.

LLNL Disclaimer

Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or
product endorsement purposes.

LLNL Auspices

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for
the U.S. Department of Energy, National Nuclear Security Administration under Contract
DE-AC52-07NA27344.

Energy-aware Thread and Data

Management in Heterogeneous Multi-Core,

Multi-Memory Systems

Chun-Yi Su

Dissertation submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science & Application

Chair: Kirk W. Cameron

Dimitrios S. Nikolopoulos

Edgar A. León

Dong Li

Eli Tilevich

Ali Butt

December 16, 2014

Blacksburg, Virginia

Keywords: Thread Management, Multi-core Processors, Performance

Modeling and Analysis, Power-Aware

Computing, Heterogeneous Memory, Data Management

© Copyright 2014, Chun-Yi, Su

Energy-aware Thread and Data

Management in Heterogeneous Multi-Core,

Multi-Memory Systems

Chun-Yi Su

ABSTRACT

By 2004, microprocessor design focused on multicore scaling—increasing the

number of cores per die in each generation—as the primary strategy for improving

performance. These multicore processors typically equip multiple memory

subsystems to improve data throughput. In addition, these systems employ

heterogeneous processors such as GPUs and heterogeneous memories like

non-volatile memory to improve performance, capacity, and energy efficiency.

With the increasing volume of hardware resources and system complexity

caused by heterogeneity, future systems will require intelligent ways to manage

hardware resources. Early research to improve performance and energy efficiency

on heterogeneous, multi-core, multi-memory systems focused on tuning a single

primitive or at best a few primitives in the systems. The key limitation of past

efforts is their lack of a holistic approach to resource management that balances

the tradeoff between performance and energy consumption. In addition, the shift

 iii

from simple, homogeneous systems to these heterogeneous, multicore,

multi-memory systems requires in-depth understanding of efficient resource

management for scalable execution, including new models that capture the

interchange between performance and energy, smarter resource management

strategies, and novel low-level performance/energy tuning primitives and runtime

systems. Tuning an application to control available resources efficiently has

become a daunting challenge; managing resources in automation is still a dark art

since the tradeoffs among programming, energy, and performance remain

insufficiently understood.

In this dissertation, I have developed theories, models, and resource

management techniques to enable energy-efficient execution of parallel

applications through thread and data management in these heterogeneous

multi-core, multi-memory systems. I study the effect of dynamic concurrent

throttling on the performance and energy of multi-core, non-uniform memory

access (NUMA) systems. I use critical path analysis to quantify memory

contention in the NUMA memory system and determine thread mappings. In

addition, I implement a runtime system that combines concurrent throttling and a

novel thread mapping algorithm to manage thread resources and improve energy

efficient execution in multi-core, NUMA systems.

In addition, I propose an analytical model based on the queuing method that

captures important factors in multi-core, multi-memory systems to quantify the

tradeoff between performance and energy. The model considers the effect of these

factors in a holistic fashion that provides a general view of performance and

energy consumption in contemporary systems.

Finally, I focus on resource management of future heterogeneous memory

systems, which may combine two heterogeneous memories to scale out memory

 iv

capacity while maintaining reasonable power use. I present a new memory

controller design that combines the best aspects of two baseline heterogeneous

page management policies to migrate data between two heterogeneous memories

so as to optimize performance and energy.

 v

DEDICATION

This dissertation is dedicated to my wife: ChiaFang and my daughter: Theresa.

My wife’s love, patience, support and understanding have lightened up my spirit to

finish this dissertation.

 vi

ACKNOWLEDGEMENTS

This dissertation was completed with a lot of support of my family, academic

advisors and fellows. Without them, I could not finish the dissertation.

First and foremost, I would like to thank my wonderful wife, ChiaFang. She

took care of most of our family chores so that I could focus on my work during the

years. Her support, encouragement, quiet patience and unwavering love were

undeniably the bedrock upon which the past ten years of my life have been built.

Her tolerance of my occasional vulgar moods is a testament in itself of her

unyielding devotion and love. I am happy that our lives will move on to the next

chapter soon after the end of this work. I thank my parents, HsinYi and YanShu,

for their faith in me and allowing me to study aboard for a long time.

I would also like to thank Dr. Kirk W. Cameron for his assistance and

guidance in getting my graduate career started on the right foot. I thank him for his

wisdom and his understanding about my difficulties during my graduate time. He

taught me how to survive an intensive Ph.D. program and guided me to be on the

right path of being a researcher. I am also in appreciation of Dr. Dimitrios S.

Nikolopoulos. I learned a lot from him about the attitude of doing a good research.

I thank him for many insightful conversations as well as for the many helpful

comments carried on long-distance via e-mail during the development of my

several papers. I also owe a lot of thanks to Dr. Edgar A. León during the time I was

at LLNL. He supervised me to finish the third part of the dissertation and looked

for much software/hardware resource for me to finish the research. Without him, I

could not have made progress as fast as I did. I would also like to thank my other

Ph.D. committee members, Dr. Eli Tilevich and Dr. Ali Butt for their discussions

 vii

and suggestions of this dissertation. I specially thank my committee member Dr.

Dong Li, as well as a great friend for his patience and insightful advice while at

Virginia Tech. I also thank Dr. Bronis R de Supinski, who gave me support and

help to revise my proposals and papers during the time of LLNL. I thank Dr.

Gabriel Loh and Dr. David Roberts from AMD Research. I learned decent

knowledge of memory simulation from them via our bi-weekly meeting. I

cannot finish my third part of my dissertation.

I have been very fortunate to work with many colleagues, Hung-Ching Chang,

Shuaiwen Song, Bo Li, Matthew Grove, Hari Pyla, Aleksandr Khasymski, Sergio

Bernales, Timmy Meyer, Kelsey Farenholtz, Min Li and Guanying Wang while at

Virginia Tech. They helped me a lot when I was in Blacksburg.

I would like to thank the Department of Computer Science at Virginia Tech

for providing such an excellent research environment for me.

Lastly, this work was performed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory under Contract

DE-AC52-07NA27344. LLNL-TH-665255. In addition, this dissertation is based

upon work supported by the National Science Foundation under Grant No.

0910784 and 0905187.

 viii

This page intentionally left blank.

 ix

TABLE OF CONTENTS ... ix

CHART INDEX... xiii

TABLE INDEX ... xvi

Introduction ... 1

1.1. Research Challenges for Heterogeneous, Multicore, Multi-Memory

Systems ... 3

1.1.1. Energy-Aware Computing ... 4

1.1.2. Resource Management .. 5

1.2. Research Objectives ... 8

1.3. Research Contributions... 9

1.3.1. Improving Performance and Power Efficiency in NUMA Systems

Using Thread Management ... 9

1.3.2. Modeling Performance and Power Efficiency in NUMA Memory

Systems Using Queuing Methods ... 11

1.3.3. Managing Memory for Two-Level Heterogeneous Memory

Systems ... 12

1.4. Organization of the Dissertation ... 13

Background and Literature Survey ... 16

2.1 Performance Models on Multicore Systems ... 16

2.1.1 Analytical Models.. 17

2.1.2 Dynamic Approaches .. 18

2.2 Dynamic Concurrency Throttling ... 19

2.3 Performance Models and Optimization Techniques on Memory Systems

 21

2.4 Power Models and Optimization Techniques on Memory Subsystems ... 25

2.4.1 Power Models .. 25

2.4.2 Power and Energy Optimization .. 25

2.5 Energy-Aware Management on Multicore NUMA Memory Systems 27

2.6. Data Management on Heterogeneous Memories 29

2.7. Phase Change Memory Optimization ... 30

2.8. Summary and Conclusions ... 31

NUMA Scheduling ... 34

3.1. Introduction .. 34

3.2. System Design .. 38

3.2.1. Overview ... 38

 x

3.2.2. Metric Selection ... 40

3.2.3. Architecture-Aware Artificial Neural Network Predictor 41

3.2.4. Thread Mapping Arbiter .. 44

3.2.5. Overhead and Penalty Control ... 50

3.3. Performance Evaluation ... 51

3.3.1. ANN Model Prediction Accuracy ... 52

3.3.2. Comparison between ANN Model and Linear Regression Model 54

3.3.3. Thread Mapping .. 56

3.3.4. ANN versus TMA ... 56

3.3.5. DyNUMA Results ... 57

3.4. Conclusions and Future Work .. 60

NUMA Modeling .. 62

4.1. Introduction .. 62

4.2. A Preliminary Queuing Model ... 64

4.2.1. Memory System in NUMA Multi-core Multiprocessors 65

4.2.2. A M/M/C Queuing Model ... 66

4.3. Performance and Energy Models ... 70

4.3.1. Concurrency-Frequency Model ... 70

4.3.2. Energy Model .. 72

4.4. Model Parameterization and Validation ... 75

4.4.1. System Setup and Test Benchmarks .. 75

4.4.2. Power Profiling .. 76

4.4.3. Determining Parameters .. 77

4.4.4. Model Validation ... 78

4.5. Analysis .. 81

4.5.1. Impact of TLP .. 81

4.5.2. Impact of Memory Frequency and MLP 82

4.5.3. Searching for Optimal Energy Consumption 84

4.6. Conclusion .. 87

Heterogeneous Memory Controller Design .. 89

5.1. Introduction .. 89

5.2. Hybrid Policies Memory Controller Design ... 93

5.2.1. Two Baseline HM Policies .. 94

5.2.2. Hybrid Policies Switch Engine .. 95

5.2.3. Remapping/Migration Table .. 96

5.2.4. Migration Engine ... 97

5.2.5. Energy-aware Controller and Locality Engine 98

5.2.6. DRAM and PCM PHY Interface ... 99

5.2.7. Storage overhead ... 99

 xi

5.3. Validation ... 100

5.3.1. Validation Challenge ... 100

5.3.2. Methodology .. 102

5.3.3. Performance Validation against Native Systems 106

5.3.4. PCM System Validation .. 108

5.4. PCache and HRank Policies Performance and Locality Analysis 111

5.4.1. Case Studies ... 111

5.4.2. Locality Analysis for Energy Optimization 114

5.5. Results .. 117

5.5.1. Energy Optimization.. 117

5.5.2. Performance Evaluation .. 118

5.6. Discussion ... 121

5.6.1. Policy Details and Summary ... 121

5.6.2. The Impact of Memory Access Patterns 124

5.6.3. The Impact of Heterogeneous Memory to the HPC Systems 125

5.7. Conclusions .. 126

Conclusions and Future Work .. 128

6.1. Conclusion .. 128

6.1.1. NUMA Scheduling .. 129

6.1.2. NUMA Modeling .. 129

6.1.3. Heterogeneous MC design... 131

6.2. Future Work .. 132

Bibliography ... 136

 xii

This page intentionally left blank.

 xiii

Figure 1.1-1 Performance variance of best, worst and default mapping among 85

mappings of the SP.A benchmark. .. 7

Figure 3.1-1 A 16-core NUMA architecture with 4 memory nodes 36

Figure 3.2-1 Diagram of the DyNUMA system framework. 39

Figure 3.2-2 The ANN model for four quad-core processors (16 cores in total) and 4

NUMA memory nodes .. 42

Figure 3.2-3 The distribution of remote memory accesses and local memory accesses

in an OpenMP parallel region in FT.B.. 46

Figure 3.3-1 The distribution of ANN prediction error rate for EDP and wall-clock

time ... 53

Figure 3.3-2 The EDP prediction results for the 16-cores system with the ANN

model. The Normalized Prediction refers to the predicted value normalized by the

measured one. ... 53

Figure 3.3-3 Prediction accuracy of the linear regression model 54

Figure 3.3-4 Performance comparison of ANN over TMA 57

Figure 3.3-5 Performance improvement with DyNUMA on the three platforms. 58

Figure 3.3-6 Performance with DyNUMA on the 64-cores Tilera platform 59

Figure 3.3-7 Performance with DyNUMA on the 16-cores Barcelona platform 59

Figure 3.3-8 Performance with DyNUMA on the 32-cores Magny-Cours platform . 59

Figure 4.1-1 Energy improvement of FT benchmark .. 63

Figure 4.2-1 Memory systems in NUMA multi-core multiprocessors 65

Figure 4.2-2 A simplified and abstract memory model to apply the M/M/C queuing

model... 67

Figure 4.4-1 Validation of the performance model by varying TLP and MLP 79

Figure 4.4-2 Validation of the energy model by varying TLP................................... 81

Figure 4.5-1 The impact of TLP to performance and average memory stall per LLC

miss ... 82

Figure 4.5-2 The impact of memory frequency to performance and system power .. 83

Figure 4.5-3 The impact of the number of memory nodes to performance and system

power... 83

Figure 4.5-4 Energy improvement of EP benchmark .. 85

Figure 4.5-5 Energy improvement of SP benchmark .. 85

Figure 5.1-1 Candidate heterogeneous main memory organizations. (a) PCache: a

hierarchical, inclusive system (b) HRank: a flat, exclusive system 90

Figure 5.2-1 Hybrid Policies Memory Controller simulation framework. 93

 xiv

Figure 5.3-1 HMSim memory bandwidth, power and latency comparison with native

systems .. 107

Figure 5.3-2 MEM.BW Performance on PCM and DRAM(DDR3) systems 109

Figure 5.3-3 Power Breakdown of PCM and DRAM(DDR3) systems using

MEM.BW.. 110

Figure 5.4-1 pF3D performance comparison using HRank and PCache policies in the

HpMC ... 112

Figure 5.4-2 LULESH performance comparison using HRank and PCache policies in

the HpMC.. 114

Figure 5.4-3 The correlation between locality and energy consumption of HRank and

PCache policies .. 117

Figure 5.5-1 Energy consumption of PCache, HRank and EaC modes 118

Figure 5.5-2 Bandwidth, energy, latency comparison of DRAM, PCM, and three

modes in HpMC .. 119

Figure 5.6-1 Traffic of Graph500 using PCache policy .. 122

Figure 5.6-2 Traffic of pF3D using PCache policy ... 122

Figure 5.6-3 Pseudo codes of matrix multiplication using (i, j, k) and (k, j, i) memory

access patterns. .. 124

 xv

This page intentionally left blank.

 xvi

Table 3.2-1 Three metrics used for the prediction of performance and energy

efficiency... 41

Table 3.2-2 A TNT for 4 threads whose data is distributed into 4 memory nodes 49

Table 3.2-3 An example to show how we choose the best element 50

Table 3.3-1 Three test platforms .. 52

Table 3.3-2 Comparison of the linear regression (LR) and ANN models for time and

EDP predictions .. 55

Table 3.3-3 Performance improvement with our thread mapping algorithm 56

Table 3.3-4 Performance improvement with DyNUMA on the three platforms 60

Table 4.3-1 Parameter Description and Value ... 74

Table 4.4-1 Collected parameters for applying the models 76

Table 4.4-2 Power profiling with memory frequency set as 333MHz 76

Table 4.4-3 Relative prediction error with memory frequency set as 333MHz and

533MHz .. 78

Table 5.2-1 STORAGE OVERHEAD ... 100

Table 5.3-1 The effect of the SimNow IPC on bandwidth....................................... 101

Table 5.3-2 SIMULATION SYSTEM CONFIGURATION 103

Table 5.3-3 BENCHMARKS FOR EVALUATION ... 105

Table 5.3-4 IPC MODEL EVENTS AND COEFFICIENTS 105

Table 5.3-5 PCM V.S DRAM PERFORMANCE CHARACTERISTICS 110

Table 5.6-1 Performance of the matrix multiplication using two memory access

patterns. ... 125

 xvii

This page intentionally left blank.

 1

As of 2004, the microprocessor moved to multicore scaling—increasing the number of

cores per die each generation—as its primary strategy for improved performance. Multicore

processors can achieve higher computing throughput with adequate power consumption [22,

74], although the frequency of a multicore processor may be lower than that of a serial

execution processor. Many in the microprocessor industry believe that this exponential

multicore scaling will continue into the hundreds or thousands of cores within a single chip.

For example, Intel introduced 48-core MIC architecture [8], the Cray XMT [143] system used

128 lightweight stream cores in a single chip, and the Tilera TilePro64 [10] system built

64-core on chip with a mesh on-chip network.

These multicore processors usually equip multiple memory subsystems to improve the

data throughput. Non-uniform memory access (NUMA) is a typical multi-memory design

used in these systems, where the memory access latency depends on the memory location

relative to the core/processor. Under NUMA, a processor can access its local memory faster

than non-local memory.

More recently, many in the research community and industry have discussed the

introduction of heterogeneity to processors and memory systems to improve computation

 2

throughput and energy efficiency. Computing systems have started to include other

heterogeneous computing accelerators for special-purpose tasks. The most dominant is the

graphics processing unit (GPU), which was first intended to carry out graphics computations

in parallel. Over time, GPUs have become more general, allowing them to be applied to

general-purpose tasks with remarkable power efficiency. The Intel MIC is another example of

heterogeneous computing; its architecture utilizes a high degree of parallelism in smaller,

lower-power lower-performance Intel processor cores. It communicates with the CPU through

a high-speed PCI bus. The result is improved performance on highly parallel applications. In

addition, people also explore the hybrid use of traditional DRAM and emerging Non-Volatile

Memory technologies, like phase-change memory (PCM) [36], STT-RAM [5], and

memristors [7] to improve performance scalability, capacity, and energy efficiency.

With the increasing number of hardware resources and greater system complexity due to

heterogeneity, future systems need more intelligent ways to manage hardware resources.

Early studies geared toward improving performance and energy efficiency in these

heterogeneous multicore, multi-memory systems focused on tuning a single or a few

primitive(s) in the system. The key limitation of past research was a lack of holistic

methodologies and resource management approaches to manage the tradeoff between

performance and energy consumption. In addition, the shift from simple, homogeneous

systems to these heterogeneous, multicore, multi-memory systems requires in-depth

understanding of efficient resource management for scalable execution, including new models

to capture the tradeoff between performance and energy, smarter resource management

strategies, and novel low-level performance/energy tuning primitives and runtime systems.

In this chapter, we discuss the background for the research conducted in this dissertation.

In particular, Section 1.1 discusses the challenges and defines the problems that we attempt to

address concerning heterogeneous, multicore, memory-memory systems. Section 1.2

 3

discusses the research objectives. Section 1.3 summarizes the contributions that we make in

this dissertation. Finally, Section 1.4 outlines the organization of the full dissertation.

 To exploit the increasing of the number of cores in multicore systems, applications,

programming languages and operating systems, we need to deal with parallel execution for

processor throughput gains. Parallel programming is challenging: Programming for

performance and energy efficiency is still a dark art, since the tradeoffs between performance

and energy are not well understood. The tradeoffs between energy efficiency and performance

that were well investigated in relation to serial processors in the 1990s have become more

difficult to analyze in the multicore era due to the exponential increase in hardware resources

and the complexity of computing systems. The community has spent over two decades trying

to make the execution more efficient through the use of sophisticated memory hierarchies in

giga- and tera-scale systems by improving data locality, and thereby lowering average

memory access and bandwidth in our programs. The community has learned that efficient

programs leverage small, fast caches close to the executing threads. We have also learned that

minimizing the number of data communications between threads and the latency of those

transmissions typically improves performance and energy. These design principles that were

developed in the last two decades must be adapted to the heterogeneous multicore,

multi-memory execution paradigm. However, many questions on how to design multicore,

heterogeneous, multi-memory systems are still open and widely debated. In this section, we

discuss two challenges that are critical for high performance and energy-efficient execution in

multicore, heterogeneous, multi-memory systems.

 4

Today, multicore processors are the fundamental elements for large-scale

high-performance systems. One of the most significant challenges for designing highly

scalable parallel applications for larger-scale systems is a growing gap between the need for

performance and the limits of the power envelope [70, 173]. A DARPA-commissioned report

recommends a power of 20 megawatts for exascale systems [32]. However, several of today’s

most powerful supercomputers, armed with multicore nodes on the TOP500 List [14], require

close to 15 megawatts of peak power. The power wall is already being reached by current

petaflops systems (e.g., China’s Tianhe-2 (MilkyWay-2)’s power requirement is at 17.8 MW

[14]). Increasing the scale of HPC systems to improve computing throughput leads to serious

reliability concerns for such systems due to heat emissions caused by high power

consumption.

The energy consumption of the main memory system has also been growing [92, 114]

due to emerging big data and HPC applications, which require a large amount of main

memory bandwidth and capacity. Nowadays, memory sub-systems account for up to 40% of

system energy [92]. This has become a new challenge for memory management using

traditional DRAM technologies due to the limitations of high static power. Many people in

the research community have begun to discuss the introduction of heterogeneity to the main

memory to address this problem. They explore the hybrid use of traditional DRAM and

emerging NVRAM technologies to improve performance scalability, capacity, and energy

efficiency in the main memory systems.

To alleviate the power/energy crisis, the US Department of Energy has challenged the

research community to build a supercomputer capable of exascale computations using less

than 20 MW of power by the year 2022 [187]. To achieve this goal, the new systems must

achieve a 1,000-fold performance improvement over current petaflops systems with only a

 5

10-fold power budget [6].

Researchers have proposed novel software and hardware techniques to decrease power

and energy consumption. The hardware optimization techniques include power capping [115],

turbo/hyper-threading power states [41], and power configuration and power management in

processor and memory sub-systems [22, 33, 58, 87]. These novel techniques drive new

energy-efficiency achievements in the new computing system designs. On the other hand,

software techniques provide several benefits for power/energy control schemes. First, they

can leverage system-level information to aid decision making in their power/energy control

schemes. For example, operation systems can provide a software stack to collect system-wide

execution signatures, including processor and memory utilizations, frequency, and power

states to assist the power/energy control schemes. They can also collect specific workload

characteristics to optimize energy consumption. Second, software techniques provide more

flexibility than hardware solutions. Software approaches can quickly adjust power control

schemes, prediction models, and power budget plans to meet the needs of different system

design requirements. In addition, a software approach can exploit the hardware control

components, such as dynamic voltage and frequency scaling (DVFS) [100, 162, 200], thermal

control [124], and power states [41] to control the energy consumption for computation.

Unfortunately, these existing energy-aware approaches are not directly applicable to

emergent heterogeneous, multicore, multi-memory systems. Therefore, in this dissertation, we

will adapt existing techniques and create new ones to improve the energy efficiency of

emergent complex systems with increasing heterogeneity.

Efficient hardware resource utilization is the key for scalable execution. On a multicore

system, concurrent thread execution needs to share hardware resources, such as the last level

cache, high-speed bus, and off-chip memories, to improve utilization. Higher resource

 6

utilization improves collective performance, reduces the cost of hardware design, and even

mitigates heat dissipation. However, resource sharing in multicore systems imposes new

design challenges. In particular, more hardware resource sharing in concurrent execution can

lead to performance variation and unwelcome energy waste. Resource management becomes

more challenging in the multicore era due to the increasing number of cores and main

memory devices (e.g., DIMMs, channels).

We use the following simple example to explain this problem. We ran the SP application

from the NAS Parallel Benchmarks on an AMD 16-way, multicore, NUMA system. The SP

application ran multiple times using 8 concurrently executing OpenMP threads with 85

different thread-to-core mappings. We analyzed 85 different mappings on 9 concurrent

execution regions of the SP application. Figure 1.1-1 shows the performance variance of the

best, the worst, and the system default mapping. We found a performance difference between

the best and the worst mapping of up to 45%. In addition, we found that the default system

mapping did not guarantee the best performance. Compared to the default system mapping,

the best mapping from the 85 selected mappings was 18% faster. However, the total number

of mappings is 4.29*10
9
 (8 threads mapping to 16 cores). In this small example, we still have

a large unexplored space to find the optimal solution, not to mention that it does not consider

the data distribution in the memory system. Once the performance becomes unpredictable,

violations of the system’s performance requirements may occur.

 7

Figure 1.1-1 Performance variance of best, worst and default mapping among 85

mappings of the SP.A benchmark.

Another challenge arises in operation systems. Traditionally, operating systems have been

responsible for managing shared hardware resources—processor(s), memory, and I/O.

However, traditional operating systems lack mechanisms to detect hardware resource conflict

due to concurrent execution. Hence, conventional operating system policies do not have

adequate control over hardware resource management. To make matters worse, it is still not

clear to the research community how multicore, multi-memory systems affect performance

and energy. In terms of future applications, this is becoming a serious issue in the execution,

as resource management mechanisms and policies are no longer adequate for future multicore,

multi-memory systems.

Finally, it is not clear how heterogeneity will affect future resource management systems.

While computing systems have started to include GPUs to accelerate computation tasks, how

to distribute tasks between CPUs and GPUs has become a difficult design question for

operating systems [189]. A task management system in the OS needs to have adequate tools

to decide whether to off-load tasks from the CPU to the GPU, including explicit cost models

0%

20%

40%

60%

80%

100%

120%

140%

1

2

3

4

5

6

7

8

9

N
o
rm

a
liz

e
d
 T

im
e

(%

)

Parallel Region Number

Best Mapping Worst Mapping Default Mapping

 8

and migration schemes. Today, most OSs do not have adequate tools to manage these tasks,

creating a challenge for programmers. The same situation is emerging for heterogeneous

memory systems. While big data and HPC applications drive the demand of the memory

capacity, system designers must consider whether to add another non-volatile memory layer

to traditional DRAM. However, it is still unclear to the research community how pages can be

managed in heterogeneous memory systems that combine traditional DRAM and emerging

NVRAM technologies to obtain optimal performance or energy [111].

This dissertation aims to create a new energy-aware hardware resource management

framework for future heterogeneous, multicore, multi-memory systems. It includes the

development of efficient resource control schemes, building models that capture essential

features of hardware resources, workload characteristics that affect performance and energy,

and efficient management policies that will improve performance and energy.

The objectives of this research are as follows: (1) to develop an energy-aware, resource

automation software framework that automatically identifies the optimal resource

configuration based on hardware settings, workload characteristics, and execution signatures;

(2) to identify, study, and build cost models for performance and energy problems that are

related to resource sharing, contention, and throttling in multicore, multi-memory

architectures; and (3) to build memory energy management strategies that extend the

scalability for future heterogeneous memory systems and overcome the limitations of

traditional DRAM technologies.

This dissertation consists of three parts. In the first part, we implement an automation

framework to manage threads for performance and energy optimization. In the framework, we

propose a memory-centric performance model to dynamically manage the number of threads

used in a task. We also propose a thread-mapping algorithm to redistribute threads. In the

 9

second part, we propose energy-aware models that capture dominating factors of hardware

resources that affect system performance and energy in multicore, multi-memory systems.

Finally, in the third part, we propose new memory management policies in the memory

controller that control the hybrid use of DRAM and emerging NVRAM technologies.

In this subsection, we discuss the particular research contributions of this work. Each will

be presented in more detail in subsequent chapters of this dissertation.

Non-uniform memory access (NUMA) is now the dominant memory system architecture

for multiprocessors. NUMA has been a leading design paradigm in scalable, cache-coherent,

multi-processor architectures since the 1990s.

Optimizing applications for performance and energy efficiency on NUMA architectures

is increasingly challenging because more cores are being packed on each processor. While a

significant body of prior work has treated NUMA as an issue of data distribution and

migration assuming a stationary mapping of threads to cores [26, 133, 150, 151, 184], we

consider the problem from the opposite direction: Given a distribution of data among memory

nodes, what is the optimal mapping of threads to cores? In addition to the challenges of

generating optimal static mapping of threads to cores, previous techniques to optimize power

and performance dynamically on unified memory access (UMA) systems does not necessarily

extend to NUMA systems. Earlier work [54, 116] has shown that dynamic concurrency

throttling (DCT) is a viable optimization technique for performance and energy efficiency.

DCT amounts to modifying (throttling) the number of threads to avoid oversubscribing

 10

hardware resources, such as shared memory bandwidth. DCT is beneficial when the degree of

available algorithmic parallelism in a code region is less than the maximum number of cores

available on the hardware. In a NUMA system, any attempt to throttle concurrency after

execution begins will redistribute the computation between cores, thereby forcing extraneous

cache misses, remote memory accesses, and contention. Prior work on DCT has overlooked

this problem. In our work, we consider the optimization problem for multicore NUMA

systems from the following three perspectives: (1) finding an optimal degree of concurrency,

(2) mapping threads to cores to reduce remote accesses per core, and (3) minimizing

contention on memory controllers.

We present DyNUMA, a framework for dynamic optimization of programs on multicore

NUMA architectures. DyNUMA is implemented in a runtime system to improve both

performance and energy efficiency. The core of DyNUMA is a novel memory-centric

performance model. The model captures the nonlinear and interacting effects of concurrency,

thread mapping, and data placement using a hardware–artificial neural network (ANN).

DyNUMA uses an ANN model in conjunction with critical path analysis [11] to predict

optimal concurrency and thread mapping, assuming static data placement.

This first part of the research makes the following contributions:

1. A flexible and portable framework, DyNUMA, to address the multidimensional

problem of concurrency control and thread-to-core mapping on NUMA systems.

DyNUMA dynamically controls the number of threads and thread mapping with

minimal contention during the execution to optimize the performance and energy; and

2. A novel memory-centric, nonlinear performance model for NUMA architectures that

captures the effects of concurrency, data placement, and memory contention on

system performance. The model leverages the topology of the ANN to map the

multicore NUMA architecture, and thus precisely captures the nonlinear performance

effects of NUMA systems.

 11

Ideally, as the number of cores and memory capacity increase, the consumption of

additional power should result in a substantial increase in performance. In reality, an

inadequate increase in hardware resources could have an adverse effect on performance and

worsen energy efficiency.

In previous work, researchers focused on altering CPU and memory resources based on

workload demand. These techniques include DCT [52, 116, 178], memory throttling (e.g.,

voltage/frequency scaling of DRAM) [58, 62, 214], and memory parallelism control [61, 130,

131, 213]. While these methods show promise in isolation, emergent systems must consider

their combined interactive effects on energy efficiency. For example, our early research only

focused on thread management using DCT and a thread-mapping scheme, without

considering effects resulting from the memory system, such as the impact of the memory

frequency and the number of memory nodes. To address this problem, in the second part of

the dissertation, we propose an analytical model of memory performance that uses queuing

theory to capture dominating factors of hardware resources that affect system performance

and energy in multicore, multi-memory (NUMA) systems in a holistic fashion; these include

thread-level parallelism (TLP), memory-level parallelism (MLP), and memory controller

frequency. We use the resulting model to study the combined effects of DCT, memory

throttling, and memory frequency on performance and energy, and address how to efficiently

manage these hardware resources (i.e., threads, memory nodes, and memory frequency).

The second part of the research makes the following contributions:

 Our model predicts the application of CPI as a holistic function of TLP, MLP, and

memory frequency to estimate the system performance. Furthermore, our models

show that the memory frequency, MLP, and TLP have interacting effects on

 12

performance and energy. The effects of performance and energy cannot be considered

in isolation; and

 We demonstrate that the model-guided optimization can improve energy consumption

up to 40% for applications with high demand for memory bandwidth with proper

control of resources including CPU cores, memory DIMMs, and memory frequency.

The memory wall has long been a computing bottleneck, and this has been intensified by

the introduction of multicore processors. While the primary concern of the memory wall

focuses on only bandwidth and latency, a new ―power wall‖ challenge has emerged for

scaling out memory capacity within a reasonable power budget. When big data and HPC

applications drive the demand for memory capacity, traditional DRAM technology with high

static power will unfortunately become less effective, and will not scale in terms of density

and capacity.

Previous work [66, 108, 144, 158, 159, 196, 201, 209] has proposed that the power wall

problem can be addressed using heterogeneous memories by exploiting DRAM for

performance and emerging NVRAM memory technologies for capacity and energy efficiency.

This work has proffered two basic policies to control the trade-off between delivering

performance and improving energy consumption using two basic types of memory

organization, namely PCache and HRank. PCache controls a hierarchical, inclusive system,

while HRank controls a flat, exclusive system. We demonstrate that both PCache and HRank

policies only exhibit good performance and energy for certain workloads.

In the third part of this dissertation, we propose a new memory controller (MC) design,

namely HpMC, which employs the hybrid use of the PCache and HRank policies to manage

 13

memory pages and deliver optimal performance or energy based on system demand. Our

research proposes a new memory controller design that manages memory resources (i.e.,

memory pages) in future heterogeneous memory systems.

The third part of this research makes the following contributions:

 We demonstrate via simulation that previous heterogeneous memory management

policies exhibit good performance and energy only for certain workloads;

 We propose the first hybrid policies memory controller for heterogeneous memory

systems, and our study demonstrates that better performance and energy can be

achieved through the hybrid use of these policies via a well-designed MC; and

 The results show that the HpMC guarantees the delivery of optimal energy compared

with its HM competitors, and improves energy consumption from 13% to 45%, while

providing almost the same bandwidth as and larger capacity than the DRAM system.

In Chapter 2, we discuss related work and present the background for the research

conducted in the dissertation. Specifically, we present literature surveys for the following

seven different topic areas: the performance models for multicore systems; DCT techniques

and limitations for performance and energy optimization; performance models and

optimization for memory subsystems; power modeling and optimization for memory

subsystems; energy–aware management on multicore, multi-memory systems; data

management for heterogeneous memories; and phase change memory optimization

techniques.

In Chapter 3, we describe our research on improving performance and power efficiency

for NUMA systems through thread management. We present an automation framework that

adopts an ANN model and a thread-mapping algorithm to dynamically manage the number of

threads and thread mapping.

 14

In Chapter 4, we present novel analytical models for performance and energy efficiency

for NUMA memory systems using queuing methods. The models consider important system

factors such as TLP, MLP, and memory frequency. The models consider the combined

interactive effects of these factors on system performance and energy, and overcome the

limitation of previous works, where they only considered isolated effects. We investigate and

evaluate the models on multicore NUMA platforms. We show the significant energy benefits

brought from concurrency throttling, MLP throttling, and DFS.

In Chapter 5, we present a new memory controller design that combines the best aspects

of two baseline heterogeneous memory management policies to optimize performance and

energy. We validate our memory controller design in a simulation framework against real

hardware on two state-of-the-art HPC servers. We investigate the effect of two policies on

performance and energy using HPC workloads and analyze the effect of spatial and temporal

locality on energy consumption in relation to both policies. Based on our locality analysis, we

propose a new energy-aware hierarchical memory management policy that dynamically

switches between the two policies to optimize energy.

Finally, in Chapter 6, we present a brief summary of the research done in this dissertation

and future work to be carried out.

 15

This page intentionally left blank.

 16

This chapter focuses on the background of the research and the literature survey on work

attempting to improve the efficiency of parallel applications executed on heterogeneous,

multicore, multi-memory systems. We will review numerous performance speedup models

and summarize related power/energy-saving techniques and profiling methods. Since our

models will approximate memory performance and power, we will also review memory

performance and power models and related optimization techniques. We will review different

energy-aware approaches on multicore, NUMA memory systems. Finally, we will discuss

techniques to manage heterogeneous memory system and optimization approaches for

phase-change memory.

As we enter the multicore and exascale era, we are at a pivotal point in the computing

world. Computing vendors have designed chips with multiple processor cores. These

upcoming chips are called chip multiprocessors, multicore chips, and many-core chips.

Optimizing multicore performance will require further research in both extracting more

 17

parallelism and making sequential cores faster. For this reason, we need cost models that can

capture the performance bottlenecks of multicore chips.

Amdahl’s law estimates the speedup of parallel design [24]. A number of researchers

have proposed extended models based on Amdahl’s law, such as Gustafson’s law [82],

Karp-Flatt metric [106], and models for multicore chips [30, 47, 48, 183, 203, 206]. Amdahl’s

law is based on the assumption of a fixed problem size. In contrast, Gustafson’s law says that

a larger workload can be solved within a fixed time when more parallel processors are given.

The Karp-Flatt metric introduced the notion of load-balance and synchronization overhead,

addressing the inadequacies of Amdahl’s law and Gustafson’s law. The metric can be used as

a tool to measure the efficiency of the parallel execution of a given program.

Analytical models considering on-chip networking: Latency in networks-on-chips

(NoCs) has become one of the critical factors in performance because more and more cores

are being integrated into single chips. Xiaowen et al. [203] proposed a parallel speedup model

extending from Amdahl’s law. They considered the effects of network topology, network size,

and traffic model, as well as the ratio of computation and communication. This analytical

model can guide architects and programmers to improve the efficiency of parallel processing

by reducing network latency and identifying the bottleneck.

Analytical models considering critical section and synchronization: Eyerman et al.

[67] pointed out that parallel performance is not only limited by sequential codes, but is also

fundamentally limited by synchronization through critical sections. They extended Amdahl’s

model to include critical sections, dividing critical sections into sequential and parallel parts.

Their results showed that efforts to exclude critical sections can yield substantial speedup.

Moreover, Chen et al. [43] discussed the impact of critical locks on performance in multicore

systems. Their method identifies the critical sections appearing on the critical path, and

 18

quantifies the performance impact of critical locks on the critical path. Both of these studies

tried to identify the synchronization overhead, which is not considered in Amdahl’s law.

Analytical models considering memory: Many applications cannot scale up to meet

Amdahl’s law or Gustafson’s law due to memory constraints. Sun and Ni proposed the

memory-bounded speedup model [181, 182], which is known as Sun and Ni’s law. This is a

generalization of Amdahl’s law and Gustafson’s law. Moreover, Minjang et al. [109]

estimated speedup by analyzing the cycles per instruction (CPI) on multicore systems. They

approximated the on-chip and off-chip CPIs. Off-chip CPI is estimated by CPU memory stalls

per last level cache miss.

Analytical models considering an asymmetric, heterogeneous design: There is also a

body of researchers focusing on heterogeneous, asymmetric multiprocessors [30, 81, 91, 119,

135, 136, 165, 166, 190]. Hill et al. [91] applied Amdahl’s law to asymmetric multicores,

concluding that asymmetric designs offer greater potential speedup than symmetric ones.

However, the scheduling challenge needs to be well addressed in order to obtain a speedup.

Meanwhile, Tong et al. [119, 190] explored the performance of asymmetric multicores using

asymmetric schedulers. They used CPU clock modulation to quantify performance on an SMP

and NUMA system.

Analytical models considering DVFS: Due to the widely used DVFS technique, some

researchers have discussed the effects related to CPU frequency, performance, and energy [75,

100, 162, 200]. The researchers in [100, 200] assumed a per-core DVFS knob to be available

and evaluated several different policies for a given power budget and performance estimation.

Ge et al. [162], [88] developed analytical models to approximate performance and energy cost

under different frequencies for scientific workloads on multicore systems.

Kismet [101] is a dynamic profiler that provides estimated speedups for a given serial

 19

program using binary instrumentation. It predicts speedup through critical path analysis by

calculating self-parallelism for each parallel region. The overhead of this approach is

significant. It shows 100x slowdowns due to the memory instructions instrumented.

Meanwhile, Intel Parallel Advisor [9] collects timing information from an instrumented serial

code and uses the information to build a dynamic parallel-region tree model to estimate the

speedup.

Most existing works focus on the speedup with other factors, such as chip networks,

critical sections, asymmetric task scheduling, and frequency scheduling, without considering

memory effects. Some papers [101, 109, 181, 182] considered memory behavior in their

model, but only assumed UMA memory systems, without considering NUMA effects.

With the popularity of multicore architecture, many researchers developed concurrency

throttling techniques to optimize multithreaded codes on multiprocessor systems. Voss et al.

[195] carried out one of the earliest efforts to examine parallelism on shared memory

multiprocessors. They proposed the notion of adaptive serialization, which takes critical

sections and synchronization of parallel regions into consideration. They compared the

measured parallel loop time and the predicted serial time to see if it would be useful for

parallelization. The research only focused on using either one thread or a maximal number of

threads, without considering the possibility of concurrency in between. Furthermore, Zhang et

al. [211] proposed a self-tuning OpenMP loop scheduler designed to react to the behavior

caused by inter-thread data locality. Zhang et al. [212] used a hardware-counter approach.

Their scheduler samples the performance events directly from parallel loops and uses an

off-line decision tree to decide how to schedule the loop to achieve load balance. These

authors also predicted the best number of threads of a given parallel region instead of

predicting performance. In addition, Suleman et al. [180] proposed a feedback-driven

 20

threading (FDT) framework to dynamically control the number of threads using runtime

information. This system predicts the optimal number of threads by capturing the amount of

data synchronization at execution time to mitigate bus saturation. The work took two factors

into consideration, namely the amount of data synchronization and the bus bandwidth, but the

researchers did not consider the cache contention on shared memory multiprocessors. Finally,

Li et al. [118] mixed concurrency throttling and DVFS techniques to cap power consumption

while maintaining a certain level of performance. The work focused on searching the

configuration space and conducting empirical searches to reduce the total number of

executions needed to be adapted. However, the experiments were based on simulation and

overlooked the impact of overhead when changing from one configuration to another.

There are other compiler-based approaches [84, 104] based on dynamic feedback. They

automatically determine the optimal number of threads for each parallel loop in the

application at run time. They use a threshold method to determine how many threads they

need to use in each parallel region; however, this approach does not exploit any runtime

information to make better decisions, and only returns suboptimal solutions.

Curtis-Maury et al. [55, 174] used a machine learning approach to identify the

concurrency configurations of SMP multiprocessors. Specifically, they used ANNs to predict

performance and energy consumption under different concurrencies. ANNs greatly reduce the

time in the training phase, which decreases the burden on the end user.

Most existing works leverage concurrency throttling based on performance prediction

based on compiler time and runtime information; however, these works do not take the

underlying memory topology into consideration. We extend previous work on DCT by

leveraging the CPU and memory architecture topology to predict more accurate performance.

 21

There has been a great deal of research focused on identifying memory as a future

performance bottleneck. In the early 1990s, researchers concluded that memory bandwidth

will limit the scalability of future systems, and predicted that future machines are likely to be

memory bandwidth–bound due to the speed gap between processors and memory. This gap is

also called the ―memory wall‖ [140]. We first review several bandwidth and latency models,

and then look at different techniques to optimize memory performance at different levels of

the hierarchy.

Bandwidth and latency: Molka et al. [145] analyzed the memory system performance of

Intel Nehalem in detail. In later work, Hackenberg et al. [83] compared the performance of

Intel Nehalem with AMD Shanghai. Their analysis was based on using micro-benchmarks to

measure the latency and bandwidth between different locations in the memory subsystem

while considering the impact of cache coherency. Yang et al. [205] studied the effect of cache

blocking and thread placement on multicore shared memory systems. They quantified

execution time, but did not consider cache coherency traffic. Mandal [131] modelled the

memory bandwidth and memory access latency of commercially available systems as a

function of memory concurrency. However, extending this model to multiple types of

memory controllers is difficult because the different rates of requests can only be produced

through proprietary manipulation of the on-chip memory controller and interconnects. Other

benchmarks measure the memory bandwidth but disregard most architectural details; one

example of this is the well-known STREAM benchmark [137].

Cache partition: Tam et al. [185] addressed cache contention through software-based

cache partitioning, similarly to many other researchers [45, 121, 123, 210]. In this approach,

the cache is divided among all applications running on CPU using the page coloring technique.

 22

Each application has private cache lines that the physical memory can map only into the

private portion of the cache. The size of the reserved portion of the cache is determined by the

application’s reused distance profile. The reused distance profile is very similar to the

stack-distance profile, which is approximated online using hardware counters [185]. The

principle of cache partitioning is to isolate workloads of applications that harm each other.

This approach has two limitations, as follows: (1) it requires customization of the complicated

virtual memory system on the OS; and (2) it requires additional copy operations when the size

of the cache partition changes or is reallocated. Task scheduling is not subject to these

drawbacks.

Task scheduling: There is a large body of research focused on cache-aware and

NUMA-aware task schedulers [69, 79, 129, 153, 161, 167, 175, 219]. Symbiotic job

scheduling [175] is a cache-aware method for co-scheduling threads on SMT machines that

minimizes resource contention. This method uses a brute-force method by trying a large

number of thread assignments, picking up the assignment that yields the best IPC. Majo et al.

[129] proposed a NUMA-aware task scheduler by measuring LLC pressure and NUMA

penalty. Their algorithm requires application parameters that must be obtained online, which

prevents dynamic adjustments to improve performance. Moreover, Zhuravlev et al. [35, 219]

argued that LLC misses are not the only factor causing performance degradation; rather, the

memory controller and pre-fetch mechanism are also important. They proposed an online task

scheduler, but they still used the LLC miss rate as a metric to measure the extent of local

contention. McCudy et al. [139] argued that NUMA problems can be identified with the help

of hardware counters that track remote memory references. These crossbar events can now be

counted in modern AMD and Intel architectures. We find that LLC misses are not the only

factor in performance degradation, so we use the memory request event mentioned by

Blagodurov et al. [35] as the metric to capture NUMA performance degradation.

Page migration: Page migration techniques improve performance by moving data to

 23

achieve a tight coupling of processors with resources. Chandra et al.’s [40] work represents

one of the earliest efforts [31, 132, 134, 149, 168, 193] to examine the effects of OS

scheduling and page migration policies on the performance of cache-coherent shared-memory

servers. Their automatic page migration approach leverages TLB miss information to

determine whether to migrate. In addition, Terboven et al. [186] extended the NUMA page

placement policy called next touch to migrate pages that are frequently accessed remotely.

Ribeiro et al. [160] used data access patterns to guide memory placement on NUMA systems,

while Nikolopoulos et al. [150, 151] proposed a series of user-level dynamic page migration

approaches.

Thread migration: Broquedis et al. [71] introduced a runtime system to optimize

thread-to-data affinity using a BubbleScheduler scheme. BubbleScheduler remaps threads by

employing a capacity metric to identify the memory nodes with the largest concentration of

thread data. Threads are then migrated remotely to the identified node to maximize data reuse

and minimize data transfer costs. Although this approach considers affinity, the focus is on

modeling and optimizing data movement with threads tightly coupled to data. Despite the

focus on minimizing data movement, as threads and cores scale, the need to migrate and the

amount of data to migrate increase substantially.

Data placement: To the best of our knowledge, Awasthi et al. [25] were the first

researchers to consider the problem of data placement with multiple memory controllers.

They estimated performance degradation caused by congestion in a single memory controller,

and found that the attribute costs of queuing delay and hit rates decreased in DRAM row

operations. Blagodurov et al. [34, 35] argued that a middleware of shared resources must be

extended to NUMA systems. They generated a detailed evaluation model of shared resource

contention in multicore systems. Although they considered NUMA factors, they do not

account for issues related to fairness of the queuing system in their system.

Memory controllers: We turn the discussion now to memory controller (MC)

 24

optimization. There is a significant body of recent papers [21, 50, 51, 99, 112, 126, 127, 147,

148, 192, 198, 208] examining multiple MCs in multicore systems. Loh [127] proposed a

design that takes advantage of rich inter-die bandwidth in a three-dimensional (3D) memory

chip. The memory 3D chip takes implements multiple MCs on chip that can quickly access

several banks of DRAM simultaneously. The TilePro64 processor [4] uses multiple MCs on a

single chip; all MCs are available via a mesh on-chip network. TilePro64 is one of the first

commodity processors to use four on-chip MCs. Abts et al. [21] implemented different MC

placements on a single chip processor to minimize the on-chip network traffic and controllers’

channel load. Moreover, Vantrease et al. [192] discussed the interaction between MCs and

on-chip networks and proposed MC layout solutions to minimize network traffic. Some

papers have discussed MC scheduler policies [147, 148, 208]. Kim et al. [208] proposed a

memory-scheduling algorithm that improves system throughput while minimizing

coordination among all MCs. Mutlu et al. [147, 148] considered schedulers on a single MC,

observing that the prioritization of memory requests to carry out row operations can lead to

long queuing delays for threads that are not intended to access open rows. They proposed a

Stall-Time Fair Memory scheduler to distinguish two parties, namely those that need to access

open rows and those that do not. They also proposed a batch scheduler based on age and

services of requests to achieve fairness of access time.

Most existing works model and optimize NUMA memory performance through

quantifying bandwidth and latency. However, bandwidth and latency only partially explain

the performance of applications. To the best of our knowledge, only a few models and

optimization techniques estimate inclusive performance by considering the number of cores,

bandwidth, latency, and NUMA effects and none of these are directly applicable to the

heterogeneous multi-core processor and multi-memory configurations we explore.

 25

Today’s system designer is concerned about power used by the main memory in the

system. Whether it is calculating battery life for a portable application or determining the

power supply for a server, an accurate power budget for memory is essential. Several power

models regarding DRAM technology have been proposed. We discuss several major DRAM

power models here. Micron Inc.’s model [12, 13] is used extensively; this model uses

SDRAM datasheets and measured current and voltage values for an application’s behavior,

such as page hit rates, to estimate the power consumption of a specific application. The model

also provides some basic tools [13, 19] to calculate the system power consumed by the

DRAM. The weakness of this model is that it needs accurate scaling of active/background

components. In addition, it supports a close-page policy by default which is overly pessimistic

compared to the normal case.

Joo et al. [207] predicted power and energy based on energy coefficients and an SDRAM

energy state machine that independently characterizes dynamic and static energy. They

explored energy behavior of the memory systems by changing design parameters such as

processor frequency, memory frequency, and cache configuration. Rambus Inc.’s DRAM

model was proposed in 2010 [18]; this estimates power based on device-level SDRAM details

and technology specifications using switching activity. The drawback of this model is that

device details are only available from memory venders.

Lowering DRAM frequency: Deng et al. [62] proposed MemScale, a scheme that

 26

applies DVFS to the memory controller and DFS to memory bus and DRAM chips to save

power and energy. This approach makes use of the OS’s memory policy to decide on

DVFS/DFS modes based on current bandwidth needs. Moreover, David et al. [58] assessed

memory DVFS techniques in a real system, emulating reduced memory frequency by

changing timing registers and using an analytical model to compute power drop.

Low memory power states: A body of studies has focused on how to utilize low power

modes of DRAM, namely Rambus memories. Lebeck et al. [110] made use of page allocation

policies to assist the OS and to complement the hardware power management. Their approach

increases the chances that DRAM chips can be put into low power modes. Diniz et al. [65]

proposed several techniques to limit consumption by controlling the power states of memory

devices, as a function of the load on the memory subsystem. Specifically, they used

optimization Knapsack algorithms to compute the optimal configuration of power states for a

given power budget. Fan et al. [68] developed an analytic model that approximates the idle

time of DRAM chips using an exponential distribution, and validated the model against

trace-driven simulations. The trace-driven simulator processes instructions and data address

traces of applications. However, the model ignores memory bus contention and the

open/closed state of row operations in DRAM banks.

Huang et al. [97] proposed a power-aware virtual memory system that can effectively

manage the energy footprint of each process through virtual memory remapping. Li et al. [120]

built a model to estimate performance loss of low power management and proposed

performance-guaranteed low power management schemes for both memory and disks. Pandey

et al. [194] explored the unique memory behavior of DMA accesses to aggregate DMA

requests from different I/O buses together in order to maximize the memory low power

duration.

Capping temperature: Recent research has proposed techniques to limit peak power

consumption or manage temperature. Lin et al. [124] proposed dynamic thermal management

 27

(DTM) schemes to improve performance under the given thermal envelope. They proposed

two schemes coordinating multicore and memory and adopted the clock gating and DVFS

techniques for processor cores when memory was to be over-heated. Lin et al. further

addressed the weakness of their previous study, namely the neglect of the CPU’s heat

dissipation and its impact on DRAM memories [125].

Other approaches: Delaluz et al. [60] proposed a compiler-directed and

hardware-assisted hybrid approach to exploit low power models in memory. Moreover, Zheng

et al. [213] proposed the mini-rank scheme, which adds a small bridge chip to each DRAM

DIMM to break the DRAM ranks into multiple smaller mini-ranks. This approach increases

the granularity DRAM access so that it can reduce the number of devices in a single memory

operation to save power and energy. Hur et al. [98] used a history-based memory scheduler to

manage power and energy. When additional DRAM power reduction was needed, they used a

throttling approach to suppress DRAM activities by delaying the issuance of memory

operations.

Most of the existing memory power models assume that only one memory controller and

one DRAM module exist in the system. Our memory power model is similar to that of Micron,

but is extended to multiple memory controllers with multiple DRAM modules. This

represents a natural extension of the NUMA topology. Our optimization approach is different

from existing techniques: We consider the best number of memory nodes needed for specific

applications and turn the unused memory nodes to low power states.

Performance and power are critical design constraints in today’s HPC systems. Reducing

power consumption without affecting system performance is a challenge for the HPC

 28

community. There is a significant body of research focusing on middleware and runtime

systems. In early works, researchers applied DVFS techniques to data centers, while power

consumption became a critical issue for large commercial server farms [27, 33, 38, 57, 64, 93,

218]. We introduce an instrumentation-based and transparent approach below.

Instrumentation-based approach: To exploit energy savings, the system needs to

identify the potential regions of codes that can reduce energy consumption. Several studies

have used the instrumentation-based approach, which involves (1) source code

instrumentation for performance profiling, and (2) deciding on an energy policy based on

profiled information. Cameron et al. [37, 76] used PMPI to profile MPI communications and

exploit CPU idling to save energy. Moreover, Hsu et al. [95] used binary instrumentation to

profile and insert DVFS scheduling functions to improve energy consumption. Freeh et al. [72]

used PMPI to time MPI calls and decide whether or not to apply DVFS. These approaches

require manual instrumentation to detect the inefficient regions.

Transparent approach: Several automated techniques have been proposed that are

transparent to system users. Hsu and Feng [94] proposed the β-adaption algorithm to

automatically adapt the voltage and frequency for energy savings at runtime. The user can

specify the maximum allowed performance slowdown, and the algorithm will schedule CPU

frequencies and voltages in such a way that the actual performance slowdown does not exceed

what has been specified. Ge et al. [163] proposed CPU MISER, a performance-directed

runtime system for power-aware computing. CPU MISER supports system-wide,

application-independent, fine-grain DVFS. Moreover, it identifies several types of inefficient

phases, including memory accesses, I/O accesses, and system idle under power and

performance constraints. The researchers propose an accurate DVFS performance-prediction

model that allows users to specify acceptable performance loss.

Lim et al. [122] proposed a runtime scheduler that captures MPI calls to identify the

communication regions in MPI programs. Wu et al. [202] made use of a

 29

dynamic-compiler-driven runtime to identify the memory-bounded regions for power saving.

Besides, CPUSpeed [16] adjusts power and performance modes based on the past processor

utilization history. Tolentino et al. [188] proposed Memory MISER, which consists of a

middleware in the Linux kernel that manages memory at device level and a userspace daemon

that monitors memory demand systemically to control devices and implement energy and

performance-constrained policies.

Our approach is different from existing techniques in that it exploits the idle time of cores

and memories by lowering power states. Our framework determines the resources (number of

memory nodes, and cores) needed for specific applications according to the execution

signature. Our framework also decides on the thread-to-data affiliation to minimize power and

energy consumption.

A few previous studies [108, 144, 197] considered combining NAND Flash and DRAM

in the main memory to reduce the main memory power consumption. More recent works [39,

44, 46, 73, 86, 111, 113, 158, 159, 209] have focused on using PCM to partially or completely

replace DRAM because this has more promising performance characteristics than Flash.

Since page migration is the key to energy conservation and performance for main memory

systems, several studies have attempted to address this problem. In a related approach [97],

the authors proposed an OS-controlled, power-aware virtual memory periodically to migrate

pages based on the reference bits. Although previous OS-only approaches have been able to

improve energy consumption, OS latency is still a major concern. Several

hardware-controlled systems were studied in [66, 194]. Pandey et al. [194] exploited the

access pattern in workloads by frequently clustering accessed pages in a small subset of the

memory chips to improve locality and energy consumption. Dong et al. [66] implemented an

address translation mechanism in the memory controller that can dynamically migrate data

 30

between on-package and off-package memories. Such works simply looked at performance

and energy through a single management policy; our work is different in that we explore the

design space of combined policies to find the optimal solution.

Two memory hierarchy designs have been discussed in previous work. The first [158],

[66] organizes the first level of memory as the cache of the second level. The second level

memory is managed by the OS while the first level of memory is managed by the MC. The

second design [159, 209] manages both memory layers as a flat address space. The idea of

this design is to keep hot pages (high utilization) in the first level of memory, while migrating

cold pages (low utilization) to the second level of memory. The MC [159] implements a

variation of the 16-LUR MQ algorithm to rank the hot and cold pages and migrate them

periodically. The OS does not immediately see the page migrations; it only updates its

mapping of virtual pages to physical frames periodically from the address table of the MC.

Lee et al. [111] proposed a buffer organization approach to narrow the row buffer sets to

mitigate high energy PCM writes and exploit locality to coalesce write operations to hide

latency. They also proposed a partial-writes technique, which maintains a bookkeeper to track

data modifications and dirty cache lines in the MC to reduce migration traffic. Qureshi et al.

[154] proposed a PreSET technique that monitors the modification of cache lines. As soon as

the cache line is dirty, the PCM system initiates a SET operation to the memory cells required

by the dirty cache line prior to the write operation. Thus, the write operation for the dirty

cache line only needs a shorter RESET operation. Moreover, Yang et al. [204] proposed a

data-comparison write (DCW) approach. The DCW scheme performs a read operation before

the write operation to identify the previously stored data in the selected PCM cell. The

scheme then compares flipped bits between the stored data and overwrites the bits that change.

Hay et al. [89] proposed several policies that schedule write operations to maximize

 31

concurrent writes in the bank level based on the chip power budget and flipped bits

information. This approach can improve both performance and energy consumption.

 This dissertation focuses on improving the efficiency of high-performance systems with a

particular focus on memory. To place our work in context, in this survey, we explored several

related topics including system efficiency techniques (dynamic concurrency throttling,

NUMA optimizations, data placement), techniques that further insight and understanding

(performance models, power and energy models), and techniques that explore and exploit

emerging systems (phase change memories, heterogeneous memories).

 We also described some of our early findings that indicate performance and power have

complex interactions not captured by the current state of the art techniques. For example, the

interactive effects of resource contention on power and performance in caches, memory,

network and I/O lead to inefficiencies in resource management at runtime. We also found that

heterogeneity in memory and elsewhere in the system will play an important role for scalable

and energy-efficient execution.

 Our literature survey also indicates that performance and power models play a significant

role in the prevailing runtime optimization techniques for thread scheduling, frequency control,

memory throttling and data migration policies. This previous work motivates and forms the

basis for the new modeling techniques proposed in this dissertation. In particular, our key

observation is that existing models lack the detail needed to capture the interactive effects of

power and performance. Nonetheless, we show that these interactive effects cannot be ignored

and the effects grow with heterogeneity.

 Thus, in the next chapter, we describe our techniques to improve the performance and

power efficiency of thread management in NUMA systems by improving our ability to analyze

the tradeoffs (using advanced modeling techniques) at runtime. This work in turn motivates our

 32

exploration of new analytical models described in Chapter 4. In particular, we create analytical

models that capture the interactive effects of power and performance more precisely than

previous work. These models consider the interplay of several critical factors, including

thread-level concurrency, memory-level concurrency, and memory frequency. In Chapter 5, we

leverage our improved understanding of the relationship between power and performance and

extend the concepts to heterogeneous memories. Specifically, we present a new memory

controller design that combines the best aspects of two baseline heterogeneous memory

management policies to manage page migrations efficiently and to optimize performance and

energy.

 33

This page intentionally left blank.

 34

Non-Uniform Memory Access (NUMA) is now the dominant memory system

architecture for multiprocessors. NUMA has been the leading design paradigm in scalable,

cache-coherent, multi-processor architectures since the 1990s. On a typical NUMA system,

each processor has a local memory node accessible over dedicated links, while remote

memory nodes are accessible via interconnects and through network interfaces. The latency of

accessing the local memory node is markedly lower than the latency of accessing a remote

memory node. More recently, non-uniform memory access latency is also present between

cores in the same socket. The processor uses multiple memory controllers to serve its cores,

with each controller connected to a different memory node. NUMA is therefore becoming

pronounced also within the boundaries of a single chip. For example, the Tilera TilePro64

processor has four memory nodes on the same die[4]. It implements a shared physical address

space via a mesh interconnect between cores. When a core accesses the closest memory node,

it incurs lower access latency than when accessing other memory nodes. Similar asymmetric

access latencies also appear in the NVIDIA Fermi architecture [3].

 35

NUMA improves system scalability by avoiding bottlenecks in the memory subsystem

and by increasing the memory bandwidth available per core. With an increasing number of

cores per processor, NUMA is becoming necessary for systems to scale. According to Top500

statistics, over 90% of Top500 supercomputers are based on NUMA nodes [14]. Optimizing

applications for performance and energy efficiency on NUMA architecture has been and

remains challenging. While a significant body of prior work has treated non-uniform memory

access as one of data distribution and migration, assuming a stationary mapping of threads to

cores [26, 133, 150, 151, 184], we consider the problem from the opposite direction: given a

distribution of data among memory nodes, what is the optimal mapping of threads to cores?

As remapping of threads to cores is orders of magnitude faster than remapping data to

memories, such an approach is worth considering as a dynamic optimization strategy.

Application performance is highly sensitive to thread-to-core mapping. Figure 1.1-1 in

Chapter 1 shows an example that quantifies performance variance due to different

thread-to-core mappings on a NUMA system. We use SP from the NAS Parallel Benchmarks

(class A, OpenMP version), running with 8 threads on a single node with 4 AMD quad-core

processors. We enumerate 85 different mappings for 9 parallel regions in the benchmark. We

observe a performance difference between the best and the worst mapping up to 45%.

Compared to the default system mapping (Linux 2.6.32), the best mapping is 18% faster.

Therefore, to optimize the performance and energy efficiency of applications on NUMA

systems, we must determine the best mapping. However, the search space to determine the

best mapping can be very large.

 36

Figure 3.1-1 A 16-core NUMA architecture with 4 memory nodes

For the 16-core NUMA architecture shown in Figure 3.1-1, a system similar to the

smallest system that we use in our experiments, there are over 63 million possible mappings

of threads to cores, each with different memory access latency and bandwidth available per

core. The above calculation excludes the impact of shared caches and assumes statically

placed data. If we consider these implications, the search space is even larger.

In addition to the challenges of making optimal static mapping of threads to cores,

previous techniques to optimize power and performance dynamically on Unified Memory

Access (UMA) systems does not necessarily extend to NUMA systems. Earlier work [54, 116]

shows that dynamic concurrency throttling (DCT) is a viable optimization technique for

performance and energy efficiency. DCT amounts to modifying (throttling) the number of

threads and the mapping of threads to cores used by parallel code at runtime, to avoid

oversubscribing hardware resources, such as shared memory bandwidth. DCT is beneficial

also when the degree of available algorithmic parallelism in a code region is less than the

maximum number of cores available on the hardware. On a NUMA system, any attempt to

 37

throttle concurrency after execution begins will redistribute computation between cores,

thereby forcing extraneous cache misses, remote memory accesses, and contention. Prior

work on dynamic concurrency throttling overlooks this problem. In fact, any attempt to

migrate threads or data in the operating system for the purposes of throughput, power

optimization, or reliability, suffers from the same problem.

We consider a three-dimensional optimization problem for NUMA systems: (i) finding an

optimal degree of concurrency, (ii) mapping threads to cores to reduce remote accesses per

core, and (iii) minimizing contention on memory controllers. An optimal degree of

concurrency avoids performance loss due to synchronization overhead, contention, or lack of

sufficient algorithmic concurrency in the program. Reducing remote memory accesses

reduces memory latency but may create contention due to oversubscribing of memory

controllers.

Any solution to the optimization problem needs to identify the enumeration and layout of

cores with respect to memory controllers and memory nodes (a non-trivial exercise) and also

needs to consider phase behavior in programs such as changes in concurrency, memory access

patterns or data communication and synchronization patterns [54]. Unfortunately, standard

linear regression cannot capture the complexities of such systems. Non-linear regression

models (or logistic regression) are often very complicated in formulation and can require

substantial computation resources to solve.

To address these challenges, we created DyNUMA, a framework for dynamic

optimization of programs on NUMA architectures through thread management. DyNUMA is

implemented in the runtime system to improve both performance and energy efficiency. The

core of DyNUMA is a novel memory-centric performance model. The model captures the

 38

non-linear and interactive effects of concurrency, thread mapping, and data placement using

an Artificial Neural Network (ANN). ANN’s are simpler to implement than logistical

regression techniques requiring less formal statistical training. Furthermore, ANN’s excel at

deriving structure from data samples. DyNUMA uses an ANN model in conjunction with

critical path analysis [179] to predict optimal concurrency and thread mapping, assuming

static data placement.

DyNUMA optimizes OpenMP programs where parallelism is expressed with directives

that delineate parallel regions. Each parallel region may enclose parallel loops, tasks, or

nested regions. The design objective of DyNUMA is to select the best level of concurrency

for each OpenMP parallel region and optimize thread placement to cores based on data

locality so that the program is optimized for a given performance or energy-efficiency metric.

The design of DyNUMA is based on the following characteristics:

 Scalable: system is expected to execute on architectures with massive parallelism.

 Architecture-aware: system should capture key architectural factors that affect

performance and power.

 Light-weight: system should incur low overhead to allow for online dynamic

optimization.

 Portable: system should be parameterized to allow for ease of porting to different

NUMA architectures.

DyNUMA implements a dynamic online predictor for the degree of concurrency and the

thread-to-core mapping of each parallel region. The framework is illustrated in Figure 3.2-1.

 39

Figure 3.2-1 Diagram of the DyNUMA system framework.

The runtime predictor of DyNUMA includes two components. The first component is an

architecture-aware, Artificial Neural Network Predictor (ANN) which predicts the degree of

concurrency. The second component is a Thread Mapping Arbiter (TMA) which implements

a deterministic algorithm that determines the thread-to-core mapping in linear time.

DyNUMA assumes iterative programs where parallel regions are executed a number of time

steps. This is common for many HPC applications. In the sampling phase, DyNUMA initially

executes a program with maximal concurrency –using as many threads as the number of

cores– for first k iterations. The number of k is equal to the number of memory nodes. The ith

iteration samples threads’ execution signatures on the memory node i. The choice of k is

determined by a limitation of current hardware counters, that is, hardware counters can only

profile one memory node at a time. Overcoming this limitation can significantly reduce k.

DyNUMA samples all execution signatures during these k iterations to derive predictions of

the best concurrency and thread mapping of each parallel region using ANN. Afterwards,

DyNUMA applies TMA to further improve data locality. We define an execution signature as

a collection of three metrics:

 IPC: Instructions per Cycle

 40

 LMA: Local Memory Accesses per Cycle

 RMA: Remote Memory Accesses per Cycle

The runtime system collects the execution signature of each thread and transforms into a

3-element tuple. Each tuple characterizes a thread with respect to the intensity of computation

to memory operations while executing a parallel region. LMA and RMA values are determined

by the location of a thread. DyNUMA maintains LMA and RMA per memory node for each

thread. DyNUMA uses thread-level tuples coupled with thread mapping information and

observed metrics as inputs to the two DyNUMA predictors – ANN and TMA. IPC, LMA and

RMA from all threads are used in the ANN to navigate the search space and predict

performance on all degrees of concurrency. If an application is processor-bound, IPC should

be high while LMA and RMA should be low. In this case, the ANN tends to select higher

concurrency. Conversely, a memory bound application is expected to have low IPC and high

LMA and RMA values, in which case the ANN tends to select lower concurrency to avoid

oversubscribing the memory system. The optimal degree of concurrency can vary across

regions due to variance of execution signature. On the other hand, TMA makes use of LMA,

RMA and thread mapping information to redistribute threads in a more balanced way.

Following prediction, DyNUMA actuates the selected concurrency and thread mapping for

the remaining time of program execution.

DyNUMA predicts performance and energy efficiency using the metrics shown in Table

3.2-1. The EDP and MFLOPS/Watt are calculated by Equation 3.2-1 and -

respectively. The system provides the end user with flexibility to define different metrics

while using the same unified prediction infrastructure explained in Section III.C.

 41

Table 3.2-1 Three metrics used for the prediction of performance and energy efficiency.

Wall-clock time Wall clock time of a parallel region

EDP Energy-Delay-Product of a parallel region

MFLOPS/Watt Number of floating point instructions (in millions)

per second per Watt of a parallel region

Equation 3.2-1:

 -

One of DyNUMA’s design goals is to be easily portable across platforms with different

architectures. This is achieved by using portable metrics in the DyNUMA model of

performance, namely IPC, LMA and RMA. The DyNUMA predictor uses a configurable,

back-propagation, artificial neural network model [90] which can be ported by changing two

parameters: the number of cores and the number of NUMA memory nodes of the target

machine. ANN is an adaptive system that learns its coefficients using training sets fed through

the network during a learning phase.

 42

Figure 3.2-2 The ANN model for four quad-core processors (16 cores in total) and 4

NUMA memory nodes

Figure 3.2-2 shows an example of the configurable ANN model. The topology of the

ANN model in this example emulates a node with 4 quad-core processors and 4 NUMA

memory nodes. The topology of the ANN model emulates the target architecture. The ANN

includes three layers: input, internal and output. The cells in the input layer correspond to

cores and receive as input the execution signature of each thread. The cells in two internal

layers emulate the controllers of NUMA memory nodes. The links between two internal

layers emulate communication among memory nodes. For example, the link between the

memory controller 1 and the memory controller 3 emulates data transfers between cores

attached to the memory node 1 and cores attached to the memory node 3. The ANN can have

multiple outputs. Each output represents the predicted metric at a different degree of

 43

concurrency. Output i is the predicted value when running the examined code region with i

threads.

In the current implementation, the ANN model predicts the three metrics listed in Table

3.2-1. The ANN model can be reconfigured for different systems by changing the number of

cells in the input and internal layers to correspond to different numbers of cores and memory

nodes. The topology of the ANN reflects the system interconnect topology. It is not fully

connected since each core is associated with one NUMA memory node and not all cores

directly access all memory nodes. This ANN model can be easily adapted to handle SMT

architectures (multiple hardware threads per core) by using the execution signature of

hardware thread as input. There are several advantages of using ANN. First, it can easily

capture the hardware architecture by changing its internal layers and topology. Second, it can

generate multiple predictions under different levels of concurrency in parallel, contrary to

prior linear DCT models that require a different model to predict each level of concurrency

[54]. Third, ANN is a non-linear statistical modeling tool that captures complex relationships

between inputs (execution signatures) and outputs (performance and power efficiency

metrics). Such relationships cannot be easily captured by other models. We demonstrate this

advantage by comparing the ANN model to a state-of- -art linear regression model proposed

by Curtis-Maury et. al. [55].

1) Data collection: The ANN model in DyNUMA is trained offline. Figure 3.2-1 shows

the data collection framework for offline training. The OpenMP PR Signature Collector uses a

set of APIs for application instrumentation. The instrumentation enables the collection of

signatures of parallel regions, thread mapping information and metrics targeted for

optimization. The signature collector uses PAPI[146], Oprofile [17] and WattsUp [20] power

meters. The collected data is transformed into training samples. A training sample consists of:

(1) a set of metric values (wall-clock time, EDP or MFLOPS/Watt), (2) a set of thread

 44

signature tuples, and (3) thread mapping information. LMA and RMA are hardware events and

are collected using architecture-specific counters. The thread mapping data is collected with

the portable POSIX sched getcpu() interface.

2) Power Measurement: To compute energy efficiency metrics (EDP and

MFLOPS/Watt), DyNUMA collects power consumption of each parallel region. The runtime

system uses an API to connect to external WattsUp power meters and record power for each

region. The dynamic power of the two components varies as DyNUMA changes the number

of active threads, memory access rate, and access pattern per thread. There are other hardware

components that might exhibit dynamic power variance under DyNUMA; however, their

power variance is expected to be relatively small, comparing to the processors and main

memory [77]. We use Equation 3.2-3 to compute the power variance of processors and

memory:

Equation 3.2-3:

Powerexec and Powersystem_idle are collected from the WattsUp power meter. Because we

are unable to physically access the TilePro64 machine that we use in our experimental

analysis, power consumption of the TilePro64 processor is obtained from the TilePro64

technical specification, assuming that processor power scales linearly from idle (17 Watt) to

maximum (23 Watt), with the number of cores.

TMA uses an algorithm based on the critical path analysis to identify the optimal thread

mapping. In most cases, programmers want to distribute workload (computation) evenly in

their parallel execution. However, the execution time from one thread to another may still

 45

vary. This is because of different memory access patterns across threads and uneven

distribution of data across memory nodes. The thread with the longest execution time in any

given parallel region is said to be on the critical path. Note that TMA cannot be combined

with ANN and has to be applied after ANN, because the critical path analysis can only be

performed after the thread concurrency is determined.

We use Figure 3.2-3 to further explain the critical path problem. Figure 3.2-3 displays

remote and local memory accesses per socket collected from the first OpenMP parallel region

in the NAS FT benchmark (class B). The test was deployed on a platform with four quad-core

processors (16 cores total), each with one memory node. We used 8 threads to run this parallel

region and all threads are evenly distributed to 4 sockets (i.e., 2 threads per socket). We traced

LMA and RMA per socket for 40 iterations. From the figure, we observe that each socket has

different RMA and LMA. Socket 1 attains the lowest RMA and the highest LMA. We further

mapped threads to cores in different ways, but a similar distribution of memory accesses was

observed. The difference in the number of memory accesses results in asymmetric execution

time between threads and causes the critical path problem.

 46

Figure 3.2-3 The distribution of remote memory accesses and local memory accesses

in an OpenMP parallel region in FT.B

We present an algorithm that attempts to reduce the critical path by modifying thread

placement, hence the ratio of local to remote memory accesses from each thread. The

algorithm attempts to evenly distribute accesses between memory nodes, reduce remote

memory accesses, and avoid contention on any memory node. The pseudo-code is shown in

 47

Algorithm 3.2-1.

Algorithm 3.2-1 TMA Algorithm

The input to the algorithm is a thread to node mapping table (TNT). The output is the

 48

predicted best thread mapping (mapMinCp). The TNT is a data structure collects the number

of memory accesses from each thread to each memory node, derived from the execution

signature of the program collected during sample iterations. An example of a TNT is shown in

Table 3.2-2. This TNT records the number of memory accesses from four threads to four

memory nodes. Each element (e(Ti,Dj)), corresponds to the number of memory accesses to

memory node j (i.e., Dj) from thread i (i.e., Ti). The algorithm first sorts all elements in the

TNT in descending order of number of memory accesses (line 3 of Algorithm 1). This sorting

step facilitates quick thread mapping in later steps of the algorithm. In the implementation, we

use parallel radix sort to reduce sorting complexity. The sorting result is saved in a list (sl).

Following the sorting, the algorithm iteratively selects an element from sl and places the

selected element, e(Ti,Dj) , in mapMinCp (line 6) until all threads are selected. The selected

element represents a decision of placing thread Ti on memory node Dj.

The selection criterion is implemented in GetMinCriticalPathElement (line 9). Generally

speaking, this function chooses an element whose corresponding thread placement introduces

the minimum imbalance of memory accesses between memory nodes. The function initially

selects the first element from the sorted list (line 10), and then considers elements in other

memory nodes (line 11) whose number of memory accesses are close (within 75% in our

cases) to that of the first element in the input sorted list. The reason the algorithm considers

multiple candidates instead of choosing the first element is that the first candidate from the list

may not necessarily avoid imbalance of memory accesses between memory nodes. In

particular, the first candidate may have a significant imbalance between LMA and RMA which

creates unbalanced memory accesses across memory nodes. To estimate how placing a thread

i on memory node j affects the critical path, we define a metric Impact Factor, IF, as:

Equation 3.2-4: () ∑

The equation weighs the number of remote memory accesses by a NUMA Factor because

 49

a remote access has longer latency than a local access. The NUMA Factor is the ratio of the

remote memory access latency to the local memory access latency. The NUMA Factor is a

variable. Depending on the distance between the core that issues a memory access upon a

cache miss and the memory node where the miss is served, the NUMA Factor can have

different values. The NUMA Factor can be calculated by measuring average access time

when running a micro-benchmark to vary data location between memory nodes. Based on the

above equation, an element with a small IF means that this element introduces

lowest-unbalanced memory accesses between memory nodes while avoiding remote memory

accesses. We also define a counter (cpImpact) associated with each memory node that

accumulates the IF value for each memory node whenever a thread mapping is determined

(line 14). The counter helps us trace the distribution of memory accesses across memory

nodes.

FindLowestCPElement (line 12) selects the best candidate. For all candidate elements

(line 18), the algorithm first calculates IF(e) + cpImpact[e.Dj], which estimates the impact of

the memory accesses of a specific thread to memory node Dj on the critical path. The

algorithm selects the element with the minimal value (lines 19 and 20) to minimize memory

load imbalance between nodes while avoiding remote memory accesses.

Table 3.2-2 A TNT for 4 threads whose data is distributed into 4 memory nodes

Thread

Id Mem Node1 Mem Node2 Mem Node3 Mem Node4

1 100 1000 0 2000

2 1300 200 3500 1300

3 220 5000 500 500

4 4500 3800 2000 1000

 50

Table 3.2-3 An example to show how we choose the best element

element IFvalue cpImpact IF + cpImpact

e(4,1) IF(e(4,1))=14700 cpImpact[1]=0 14700

e(4,2) IF(e(4,2))=15050 cpImpact[2]=6830 21880

e(2,3) IF(e(2,3))=7700 cpImpact[3]=0 7700

We use an example to further illustrate the algorithm. We assume a system with four

threads and four memory nodes, with a TNT as shown in Table 3.2-2. After applying the

algorithm, elements e(3, 2), e(2, 3), e(4, 1), and e(1, 4) are considered, which means that

threads 3, 2, 4, and 1 are placed on cores close to memory nodes 2, 3, 1, and 4 respectively.

We use a specific case to explain the process of choosing the best mapping candidate. In the

second iteration of the selection loop (line 4), the algorithm first selects e(4, 1) from the sorted

list. The algorithm selects this element, because it wants to first handle the element with the

highest number of memory accesses. The selection of this element is the key to improve

performance and should take the most favorable mapping when possible. However, e(4, 1) is

not necessarily the best choice because it does not have the lowest IF on the critical path.

Hence the algorithm consider other candidates (i.e., e(4, 2) and e(2, 3)). Their number of

memory accesses is close to e(4, 1). The algorithm then calculates the IF values of the three

candidates and checks the cpImpact[j] on each memory node (shown in Table 3.2-3). The

algorithm eventually selects e(2, 3) instead of e(4, 1) because its IF + cpImpact[j] is the

lowest among the three candidates, which intuitively introduces the smallest imbalance

between the four memory nodes.

DyNUMA changes concurrency and thread mapping between parallel regions. Frequent

changes in concurrency may incur performance loss due to cache flushing. To ameliorate this

effect, the runtime system considers remapping threads only for parallel code regions with

 51

sequential execution times of 100 milliseconds or higher. In addition to cache flushing,

non-optimal concurrency prediction or non-optimal prediction of thread mapping can cause

performance loss. DyNUMA uses an additional iteration to measure performance of the

selected configuration and compares it with the performance of the system default. If the

system default is better, the predicted configuration is discarded, and the system default is

taken.

Experimental analysis explores two aspects of DyNUMA: prediction accuracy of the

ANN model and effectiveness of model-based optimization. We use two benchmark suites,

the NAS parallel benchmarks (3.1) [28] and the ASCI Sequoia benchmark suite [177]. The

benchmarks have 85 OpenMP parallel regions in total. Their workload ranges from

compute-intensive to memory-intensive and most benchmarks exhibit phase changes in their

memory access patterns. We use the Class D data set for all NAS benchmarks and use two of

the Sequoia AMG benchmarks, AMG.Relax and AMG.Matvec. The number of sample

iterations k (see Section 3.2.1) is 4 in our tests. When presenting the results, we use the

notation benchmark_suite_name.benchmark_name.region_no to represent a specific

OpenMP parallel region. For example, NPB.FT.1 refers to the first parallel region in the

benchmark FT in the NAS benchmark suite. We present experiments from three platforms

listed in Table 3.3-1 to verify the portability of DyNUMA. We use Intel’s C and Fortran

compilers (version 12.0.2) on AMD platforms. On TilePro64, we use the Tilera GCC and

Fortran compiler (version 3.0.1) to perform cross compilation on an X86-64 platform.

 52

Table 3.3-1 Three test platforms

Processor #Cores Speed

Memory

Nodes

Memory

Size

Barcelona 16 2.0 GHz 4 64GB

Magny-Cours 32 2.5 GHz 4 128GB

TilePro64 64 866 MHZ 4 64GB

We execute OpenMP benchmarks with static loop scheduling, which is the most

appropriate for the selected benchmarks. Nevertheless, DyNUMA is independent of

scheduling policy and can be applied as is once an initial distribution of workload between

threads is performed by the scheduler. We execute benchmarks using first-touch for data

placement in memories. First-touch is a page-level placement policy that allocates each page

in memory located as close as possible to the processor that first touches the page during

program execution. First-touch is an effective common case policy for many operating

systems (e.g., Linux and FreeBSD).

We evaluate the ANN model prediction accuracy by predicting wall-clock time and EDP.

We use a cross validation technique in our experiments. In particular, we use 7 out of the 8

benchmarks for training and the remaining benchmark to verify prediction accuracy. Figure

3.3-1 shows the prediction error rate on the three platforms using 1400 samples in total. The

error rate for wall-clock time is 2.18% on average and only 7.7% of the samples has an error

rate higher than 5%. The prediction error rate for EDP is 3.31% on average and only 13.9% of

the samples has an error rate higher than 5%.

 53

Figure 3.3-1 The distribution of ANN prediction error rate for EDP and wall-clock time

 To investigate the variance of prediction accuracy across benchmarks, we look into the

prediction results for each benchmark.

Figure 3.3-2 The EDP prediction results for the 16-cores system with the ANN model.

The Normalized Prediction refers to the predicted value normalized by the measured one.

Figure 3.3-2 displays the EDP prediction results for one OpenMP region of each

benchmark. Similar variance of prediction accuracy is observed in other OpenMP regions. We

notice that the predictor achieves high accuracy no matter how many threads are chosen to run

a parallel region. We also notice that the prediction error rate for NAS SP is relatively high.

We suspect this is due to a shift in the memory access pattern within the benchmark region

studied. Our model cannot capture well oscillating memory access patterns within the same

 54

OpenMP region. Prediction accuracy can be improved, if the model is applied at a granularity

finer than that of an OpenMP parallel region.

Linear regression models have been used for performance prediction in earlier work [54,

116, 117]. They are a realistic baseline to compare against the ANN model. We compare the

prediction accuracy of the ANN model with that of a linear regression-based model proposed

by Curtis-Maury et al. [53]. This linear regression model is briefly explained in Equation

3.3-1.

Equation 3.3-1 :

Here, pi is the prediction target (e.g., wall-clock time, EDP or MFLOPS/Watt) for the

case of using i threads. Pmax is the measured value using maximal number of threads and Hi()

is a transfer function to scale the observed Pmax. The transfer function is a linear combination

of four hardware event rates, m1,m2,m3, and m4, with significant contribution to the observed

metric, in a statistical sense. For the 16-core Barcelona system, these rates are IPC, LMA,

RMA and branch misses per cycle. is a constant residual.

Figure 3.3-3 Prediction accuracy of the linear regression model

 55

Figure 3.3-3 shows the prediction results from 21 parallel regions of NPB FT, CG, SP

and MG benchmarks using the linear regression model. The benchmarks run with 8 threads on

the 16-core Barcelona platform. The curves within the figure represent prediction values

normalized to the measured values. We find that linear regression predicts EDP poorly.

Table 3.3-2 Comparison of the linear regression (LR) and ANN models for time and

EDP predictions

Model LR ANN

The averaged error rate for time prediction 9.90% 2.18%

The standard deviation for time prediction 1.591 0.156

The averaged error rate for EDP prediction 22.61% 3.31%

The standard deviation for EDP prediction 2741.3 106.78

The prediction error is up to 60%. We further compare the linear regression model and

ANN models in Table 3.3-2, which summarizes the prediction error rates for wall-clock time

and EDP, collected from the 16-core Barcelona platform. The results are averages of 21

parallel regions. In terms of wall-clock time prediction, the ANN model is about 7% better

than the linear model, with the standard deviation being 10 times less. In terms of EDP

prediction, the ANN model is much better (18%) than the linear model, with the standard

deviation being 25 times less. The ANN model achieves better prediction accuracy than the

linear model. This is because there is inherent nonlinear relationship between hardware

counter event rates and the prediction target, due to the implications of data locality and

contention. The linear model lacks the ability to emulate the NUMA architecture, as all

remote memory accesses are treated equally and summarized as a single term with only one

coefficient within the model, despite varying latency due to the interconnect topology and

contention. In contrast, the ANN model can map data locality and architecture details into the

model illustrated in Figure 3.2-2 , hence is able to make prediction with higher accuracy.

 56

We compare thread mapping in DyNUMA to the default thread mapping scheme used in

Linux. Table 3.3-3 displays selected results. For each benchmark, we choose a specific

number of threads and then execute it with the two methods to decide the thread mapping. We

run each test 100 times on the 16-core Barcelona machine. Table 3.3-3 reports the best

performance improvement with DyNUMA for each test case. The results indicate that

optimized thread mapping can significantly improve performance.

Table 3.3-3 Performance improvement with our thread mapping algorithm

Benchmark

Threads Performance Improvement

SP.C 4 20%

FT.B 8 28%

MG.B 12 6%

MG.B 16 14%

We use two benchmarks, AMG.Relax and AMG.Matvec to show if the ANN predictor

provides performance improvement over a system that uses only TMA as an optimizer before

showing the performance of the two optimizers combined in next subsection. Figure 3.3-4

shows that concurrency control with the ANN provides significant additional improvement in

performance and energy-efficiency compared to mere thread mapping optimization. This

behavior is more pronounced in memory-bound code regions.

 57

Figure 3.3-4 Performance comparison of ANN over TMA

We report results in Figure 3.3-5 to Figure 3.3-8 and Table 3.3-4. These results are

normalized to the respective metrics with maximum concurrency and the default Linux thread

mapping.

On TilePro64, we test DyNUMA with a limited subset of the benchmarks due to

hardware instability. The TilePro64 provides a platform-specific Oprofile tool for collecting

hardware event rates. Oprofile, unlike PAPI, does not have the ability to collect data at

runtime. Therefore, the TMA algorithm cannot collect application signatures on TilePro64.

Hence, we only use the ANN model to predict thread concurrency without applying TMA on

the Tilera platform. Figure 3.3-5 summarizes the performance of DyNUMA and Table 3.3-4

presents averages. We notice significant improvement in EDP and noticeable improvement in

wall-clock time on the TilePro64. The improvement stems exclusively from concurrency

throttling, as applications do not scale perfectly on the TilePro64. By choosing appropriate

thread-level concurrency, DyNUMA improves EDP by 30%. Improvements in performance

and energy-efficiency on other platforms are more modest but still measurable and consistent.

 58

To further explore DyNUMA results, Figure 3.3-6 to Figure 3.3-8 break down the

metrics presented in Figure 3.3-5 between OpenMP parallel regions longer than 100

milliseconds. On the 16-core Barcelona system, DyNUMA achieves improvement in

performance in 45% of the OpenMP parallel regions and energy efficiency in 72% of the

OpenMP parallel regions; on the 32-core Magny-Cours machine, DyNUMA achieves

improvement in performance in 59% and energy efficiency in 56% of OpenMP parallel

regions; on the Tilera platform, all parallel regions benefit from DyNUMA in both

performance and energy efficiency. However, not all parallel regions present opportunities for

optimization. Compute-intensive regions tend to be more scalable and less sensitive to thread

mappings than memory-bound regions. This is the case, for example, in NPB.FT.4, NPB.BT.1,

NPB.BT.4 and NPB.UA.18. In these parallel regions, DyNUMA leads to negligible

performance loss.

Figure 3.3-5 Performance improvement with DyNUMA on the three platforms.

 59

Figure 3.3-6 Performance with DyNUMA on the 64-cores Tilera platform

Figure 3.3-7 Performance with DyNUMA on the 16-cores Barcelona platform

Figure 3.3-8 Performance with DyNUMA on the 32-cores Magny-Cours platform

 60

Table 3.3-4 Performance improvement with DyNUMA on the three platforms

Metrics Barcelona Magny-Cours TilePro64

wall-clock time 6.74% 6.58% 12.88%

EDP 10.45% 6.90% 30.58%

MFLOS/Watt 10.66% 7.60% 18.49%

Performance and energy efficiency optimization depend on effective control and mapping

of parallelism to the system architecture. NUMA architectures significantly expand the search

space of optimality. Programmers are often unaware of or unwilling to navigate this space via

experimentation. Effective automatic control of concurrency and mapping needs to consider

not only workload characteristics but also specifics of the underlying NUMA architecture.

This work presents a framework combining a memory-centric, architecture-aware ANN

model and a thread mapping arbiter to help parallel programs to autonomously optimize their

concurrency and thread mapping at runtime.

We evaluate the framework using the NAS and Sequoia Benchmarks on three different

NUMA platforms. DyNUMA achieves on average 8.7% improvement in wall-clock time, 16%

improvement in EDP and 12.3% improvement in MFLOPS/Watt.

For future work, we will incorporate DyNUMA with dynamic data migration to achieve

better thread-data affinity. We will also develop a strategy to combine small parallel regions

into bigger ones to explore new opportunities for performance improvement.

 61

This page intentionally left blank.

 62

Since the dawn of the multi-core era, demand for memory bandwidth resources has

increased dramatically because of the rapid increase in the number of cores per chip.

Transferring growing amounts of data between the CPU and memory at higher rates of speed

generally increases power consumption while the performance gains vary from substantial to

nonexistent due to the memory wall. Ideally, as the number of cores and memory capacity

increase, consuming additional power should result in a substantial increase in performance.

In previous work, researchers focused on altering memory bandwidth dynamically based

on workload demand while lowering power consumption. These techniques include dynamic

concurrency throttling (e.g. thread/core control) [52, 116, 178], memory throttling (e.g.

voltage/frequency scaling of DRAM) [58, 62, 214], and memory parallelism (e.g. memory

node control) [61, 130, 131, 213]. Dynamic concurrency throttling not only controls the

computation throughput but also controls the demand of bandwidth to the memory system. In

addition, memory throttling (i.e. DVFS) and memory parallelism controls the theoretical

 63

maximal bandwidth supported in the memory system. While these methods show promise in

isolation, emergent systems must consider their combined interactive effects on energy

efficiency (i.e. power and memory bandwidth).

Figure 4.1-1 Energy improvement of FT benchmark

As shown in Figure 4.1-1, the energy consumed by FT on a 4-socket, 16-core system is a

function of memory frequency and the memory-level parallelism (MLP). FT, part of the NAS

parallel benchmarks (NPB), solves a 3-dimensional partial differential equation using the fast

Fourier transform. The vertical axis represents the energy improvement (higher is better)

over a baseline configuration of 1 memory node at 333 MHz frequency. For FT, using more

than 2 memory nodes at 400 MHz frequency and higher provide diminishing improvements in

energy. Finding the optimal energy is a multi-dimensional optimization problem because of

the interacting effects of memory frequency and memory parallelism. Furthermore, although

 64

not shown in Figure 4.1-1, thread-level parallelism (TLP) is also an important parameter as it

affects memory contention and overall performance. Understanding the combined effects of

memory throttling, memory parallelism, and thread parallelism on performance and power is

a challenging task. In this section, we propose an analytical model of memory performance

that uses queuing theory to capture the effects of contention on bandwidth [78]. We use the

resulting model to study the combined effects of dynamic concurrency throttling, memory

throttling, and memory parallelism on performance. We demonstrate that model-guided

optimization can improve energy consumption up to 40% for applications with high demand

for memory bandwidth.

Our performance model, concurrency-frequency model or CFM, predicts the number of

cycles per instruction (CPI) as a function of the number of threads, the number of memory

nodes, and the memory bus frequency. This model is based on an M/M/C queuing model [78],

which we describe in Section II. We use CFM to derive an energy model for multi-core,

non-uniformed memory access (NUMA) systems based on power models from published

vendor data [5, 23, 215]. Our energy model is described in Section III. We validate our

models of performance and energy in Section IV. In Section V we analyze the impact of

thread parallelism, memory frequency and concurrency, and their combined effect on energy

and performance. Our related work is described in Section VI followed by our conclusions in

Section VII.

In this section, we first introduce the memory system in a NUMA multi-core

multiprocessor. We then discuss how to apply a customized M/M/C system to model the

memory system performance based on the queuing theory. This M/M/C system serves as our

 65

preliminary model to motivate our further work.

We use Figure 4.2-1 to illustrate the memory system in NUMA multi-core

multiprocessors. Most of modern multi-core multiprocessors have memory controllers (MC)

integrated into processors, but we separate MC from processors within the figure for

illustration purposes.

Figure 4.2-1 Memory systems in NUMA multi-core multiprocessors

In the system, each core in a processor accesses its local memory through the local MC.

In addition, each core can also access remote memory through the routing interface and

interconnect. Although the remote memory access can bring longer memory access latency

than the local memory access, parallel memory accesses through multiple MCs increase total

memory bandwidth.

The memory system performance can be impacted by both TLP and MLP. In particular,

 66

high level TLP could result in intensive memory requests, which in turn causes memory

contention in multiple memory components (e.g., memory bus, memory controller, and

DRAM chips), dynamic concurrency throttling (DCT) [52, 116, 178] is a technique to control

TLP to control the tradeoff between performance and power.

DCT can be implemented by controlling number of threads and cores based on the need

of application at runtime. MLP also has impact on performance of the memory system. By

changing data distribution between memory nodes, MLP technique can control how many

memory nodes should be involved in an application. MLP controls the available memory

bandwidth to the application. Furthermore, memory frequency also impacts the memory

system performance. Memory DVFS is a common technique to control memory frequency to

alter memory system bandwidth. Previous work to improve memory efficiency has focused on

dynamic change of TLP, MLP and memory frequency in isolation. However, these factors

have interacting effects on memory performance and energy, which must be understood

before devising an optimal strategy. In the next section, we introduce a customized M/M/C

queuing model from queuing theory which naturally captures TL, MLP and memory

frequency effects.

Queuing theory is the mathematical study of waiting lines and queues. It has been widely

used to address problems in traffic engineering and packet switching networks. To apply

queuing theory, we abstract the memory system shown in Figure 4.2-2. It shows n cores try to

access to the NUMA memory system through a simplified memory interface. The interface

has a single logical queue connecting to memory nodes. We use a M/M/C queuing system

to model the above abstract memory system.

 67

Figure 4.2-2 A simplified and abstract memory model to apply the M/M/C queuing

model

The M/M/C queuing system models a single queue system with multiple servers to

service multiple customers at the same time. The first two ―M‖ in the M/M/C model indicates

that all requests from customers follow the Markovian (the Poisson process), and the request

service times have an exponential distribution. The ―C‖ in M/M/C denotes the number of the

servers in the queuing model.

In our cases, the server corresponds to the memory node; the customer corresponds to the

processor core; and the customer request corresponds to the memory access request per core.

We use the M/M/C system to estimate the average access latency of the abstract memory

system shown in Figure 4.2-2. We also use the following notation to describe the system. The

system has active cores. The memory request arrival rate per core is . The system has m

memory nodes running at frequency . The maximal service rate of a single server is μ. μ

is proportional to memory frequency, . In other words, , where k is a

system-dependent constant factor.

 68

We use the M/M/C system to model the average memory stall cycles per instruction as a

function of the last level cache (LLC) misses. We denote the cycles per instruction as CPI.

According to the classical M/M/C model, our M/M/C model includes both service cycles St

and waiting cycles Mt :

Equation 4.2-1 :

According to Kendall’s notation [107] and the mathematical induction of the M/M/C

model from [29], St and Mt can be expressed as follows:

Equation 4.2-2:

Equation 4.2-3:

In Equation 4.2-3, is the Erlang formula[56]. It can be expressed as follows:

Equation 4.2-4

Equation 4.2-5: ∑

γ in the Equation 4.2-3 to Equation 4.2-5 is an indicator in the M/M/C system to identify the

system pressure. γ is defined as the ratio of the total customer (i.e., core) request arrive rate

to the total service rate from all servers (i.e., memory nodes). When γ is close to zero, the

number of requests from all cores is low, so the memory system has short access latency.

When is close to 1, the system is saturated with memory requests which results in long access

latency. Based on the definition of, it can be formalized as

Equation 4.2-6:

 69

Given , we further model as follow:

Equation 4.2-7:

 in the Equation 4.2-7 contains four import factors that affect system performance.

represents the degree of TLP. Both and capture intensity of memory requests.

represents the degree of MLP. Both and control available memory bandwidth.

Based on the Equation 4.2-7, we can formalize CPI as:

Equation 4.2-8:

(

)

(

)

Obviously, CPI is a function of γ. We now use CPI () to represent CPI. To model the

NUMA latency effect, we further introduce a term in the Equation 4.2-1.

Equation 4.2-9:

 is the ratio of remote memory access to the total memory accesses. is the

latency difference between local and remote memory accesses. is a system parameter to

quantify the impact of NUMA latency on the critical path. Based on Equation 4.2-1 to

Equation 4.2-9, we have CPI(γ) as follows:

Equation 4.2-10: (

)

(

)+

 70

 (

) in the Equation 4.2-10 estimates the memory system performance

by considering interacting effects from TLP, MLP and memory frequency.

The M/M/C memory model in the previous section models memory system performance.

In this section, we propose a system-wide concurrency-frequency model (CFM) which

incorporates the M/M/C memory model to enable performance prediction for an application.

Then we use power models proposed by others [5, 23, 215] in conjunction with the CFM

model to create an energy model to explore optimal energy consumption.

The CFM model estimates the system-wide CPI of an application on multi-core NUMA

systems by considering combined effects of TLP, MLP and memory frequency. The name

Concurrency-Frequency Model captures both processor and memory-level concurrency (i.e.,

 and) and memory frequency ().

We first model the execution time (CPU cycles) of a parallel application using a single

core (= 1), and then extend it to model performance for multiple cores. The performance of

a single core is modeled in the Equation 4.3-1:

Equation 4.3-1: (

)

 is the total CPU execution cycles (i.e., with no stalls). is the total CPU

stall cycles due to accessing the memory system.

 in the Equation 4.3-1is the total number of on-chip instructions, and

 71

denotes the number of instructions which cause the LLC misses. CPICPU is the average cycles

of on-chip instruction. CPI(γ) represents the average memory stall cycles of a single core,

which can be modeled in the Equation 4.2-10 with = 1.

We extend the Equation 4.3-1 to model multi-core in the Equation 4.3-2. In general,

 can be divided into two parts: represents the computation that can be

executed in parallel without data dependency (e.g., independent floating point multiplication).

Using multiple threads resident in multiple cores to execute this computation can potentially

result in performance improvement. represents the rest of the on-chip

instructions that has to be executed in serial (e.g., the critical section that has to be executed

by individual threads).

Equation 4.3-2:

The parallel execution time can be described as:

Equation 4.3-3: (

)

We divide the Equation 4.3-3 by to calculate the system-wide CPI showed on

the left hand side of the Equation 4.3-4 (i.e.,).

Equation 4.3-4: (

)

 (

)

 represents the CPI of an application when executing with n cores

and m memory nodes at memory frequency .

We substitute

 with α, and substitute

 with (1 − α), so α denotes the

ratio of parallel execution to the whole execution. We further

 with β so β denotes

 72

the ratio of instructions that causes LLC misses to total instructions. Based on α and β, we

rearrange the Equation 4.3-4 as follows.

Equation 4.3-5: (

)

To calculate energy, we must know both execution time, and system

power, . The execution time can be directly derived from the Equation 4.3-6.

Equation 4.3-6

The system power includes CPU power (), memory power) and other power

) consumed by other system components (e.g., disk and cooling fans). We assume

 is fixed, and focus on and , because CPU and memory account for major

power consumption variance when changing n, m, and . The system power is defined in

the Equation 4.3-7.

Equation 4.3-7:

To calculate , we use a previously proposed model [2]. In particular, we first obtain

the peak CPU power from vendor’s CPU specification. Then we fix one half of the peak CPU

power as static power, and scale the other half using IPC-based linear scaling.

To calculate , we use a previous power model as well [5, 23, 215]. The memory

power consists of three parts: 1) the background power that accounts for all static power when

the memory devices stay in active and idle states; 2) the activate power that is the power

consumed in the ACTIVATE command. The ACTIVATE command selects a row address

from a memory bank and transfer the row’s cell data to the sense amplifiers, putting the

device into the active state; 3) the read/write power that accounts for the power consumption

 73

when data moves among the sense amplifiers, read/write latches and I/O pins. The memory

power can be impacted by the memory frequency, number of memory nodes and total

memory bandwidth utilization from the application (i.e., λ). We calculate the memory power

using the Micron DRAM spreadsheet [2] and those parameters listed in Table 4.4-1. Note that

the memory bandwidth utilization heavily depends on application memory access patterns. To

accurately measure memory bandwidth utilization, we count the number of off-core memory

requests using performance counters, and then divide this number by total CPU clock cycles.

The energy is the product of time and power. We define the energy consumption of an

application as follows:

Equation 4.3-8: (

) (

)

Based on the above energy model, we define an energy improvement metric

 as follows.

Equation 4.3-9:

 estimates the ratio of energy of the configuration to

the baseline configuration The higher the value, the better of energy

consumption improvement. We use it to search for the optimal energy configuration. Readers

can use Equation 4.3-6and Equation 4.3-7 to derive other energy-related metrics, such as the

energy-delay-product (EDP).

 74

Table 4.3-1 Parameter Description and Value

System Description Value

General Parameters

n Number of cores

m Number of memory domains

 Memory frequency

Application-dependent Parameters

α

β

On-chip cycles per instruction

Memory stall cycles per LLC

instructions in parallel execution

instructions in sequential execution

ratio of parallel execution of an application

fraction of total LLC misses and on-chip inst.

bandwidth requests per core

ratio of remote memory access

Architecture-dependent Parameters

PRE PDN Mem. background power: precharge powerdown 14mW

PRE STBY Mem. background power: precharge standby 168mW

ACT PDN Mem. background power: active powerdown 28mW

ACT STBY Me. background power: active standby 196mW

ACT Activation Power 146mW

WR Read and Write Power 448mW

k Service factor of memory system 4

Δnuma Diff. of NUMA Latency 45

ζ System factor to estimate NUMA effect 0.4

 75

In this section, we describe how to collect the values of the parameters listed in Table

4.3-1 to use our models in practice. We first introduce the system setup and test benchmarks

and explain how to use performance counter based approach to collect these parameters from

a baseline run. Then we validate our models against direct performance and energy

measurements.

We ran our experiments on an AMD X86-64 16-way system with 4 sockets, each of

which has one quad-core AMD 8350HE Opteron processor. The CPU frequency is fixed to

2.0GHz. Each socket has a JEDEC-style, 16GB DRAM memory system with 2 DIMM

channels. There is 64GB memory in total in the system. The memory system supports bus

frequency scaling from 333MHz to 533MHz. We use PAPI version 5.1 to access the hardware

performance counters to measure the performance events of applications. We study six

representative benchmarks in the NPB benchmark suite listed in

Table 4.4-1 to validate our models. These benchmarks range from computation-intensive

to memory-intensive, and exhibit diverse memory bandwidth utilization. We used the

OpenMP implementation of these benchmarks. We compiled these benchmarks using Intel’s

Fortran compiler (version 12.0.2) with -O3 optimization. The operation system is Linux 2.6.1.

We vary three factors that affect memory performance: the number of cores (), the

number of memory nodes () and memory bus frequency (). We control and

through the OpenMP environment variables and linux numactl command. numactl runs

applications with a specific NUMA scheduling or data placement policy. We use the

interleaving policy to spread data evenly across memory nodes. The memory bus frequency

can be chosen by setting BIOS at the system booting phase. We use two memory frequencies,

 76

333MHz and 533 MHz, to verify the models.

Table 4.4-1 Collected parameters for applying the models

Program Description Class α β

FT Fast Fourier Transform C 0.95 7.12E-04 4.20E-03 0.62 0.582

EP Monte-Carlo methods C 0.99 2.59E-05 2.56E-07 0.03 1.281

CG

Conjugate Gradient,

irregular memory access B 0.94 5.28E-03 7.65E-04 0.71 1.502

SP

Pena-diagonal matrices

solver B 0.91 2.31E-03 4.82E-03 0.72 0.953

MG

Multi-Grid on a sequence of

meshes B 0.88 2.01E-04 4.18E-03 0.64 0.984

BT Block Tri-diagonal solver B 0.98 2.01E-04 2.61E-03 0.67 0.85

To measure system power, we use the WattsUp [20] power meter to sample the system

power of each benchmark at runtime. We ran each benchmark with different number of cores

() and memory nodes () configurations with the two memory frequencies. Table 4.4-2

shows the power of three benchmarks at memory frequency 333MHz with different and

 configurations. We use the measured power and energy to validate our energy model.

Table 4.4-2 Power profiling with memory frequency set as 333MHz

Freq=333MHz EP.C
Number of Memory Nodes

FT.B
Number of Memory Nodes

SP.B
Number of Memory Nodes

1 2 3 4 1 2 3 4 1 2 3 4

Num. of Cores

16 569.1 567.1 567 568.1 586.8 603.4 622.7 647.7 16 582 593.4 621.9 633.4

12 532.9 534.3 550.5 533.6 582.7 597.9 621.3 632.3 12 579.3 574.5 581.5 593.8

8 499.3 498.3 498.1 498.1 570.3 578.1 586.8 599.8 8 540.6 571 559.1 590

4 461.6 460.8 460.2 459.8 540.9 565.3 568.9 567.3 4 512.1 522.1 521.6 532.8

1 426.8 427.1 427.3 426.4 488.5 490.2 490.2 490 1 474.1 474.1 470.6 474.6

 77

The CFM model in the Equation 4.3-5 needs two sets of parameters. The first set

contains architecture-dependent parameters. The first set includes , . To

calculate k, we execute the STREAM micro-benchmark [138] to stress the memory system

to measure the maximal memory bandwidth () at two different memory frequency levels

(333MHz and 533MHz). Given the memory frequency and , we calculate k. To

calculate , we also use STREAM. In particular, we first use numactl to control data

distribution across memory nodes. Then we run STREAM and use the hardware counter event

CPU READ COMMAND LATENCY NODE to measure latency differences between remote

and local memory accesses. is the average value based on the measurement. is an

empirical value based on our previous work [178]. is an empirical scaling factor to

calibrate the model’s prediction and the measurement from systems. is the is the average

value from over 1500 exhaustive experiments with diverse execution patterns.

The second set contains application-dependent parameters. The second set of parameters

includes and

. To calculate them, we use hardware performance

counters. In particular, for each benchmark, we perform a baseline run with (

 = 333MHz), and collect the following hardware counter events: total instructions,

total CPU clock cycles, LLC misses and CPU stall cycles (PAPI_RES_STL). To calculate

 (non-stall CPU cycles), we subtract CPU stall cycles from the total clock cycles. To

calculate , we measure total instructions spent in OpenMP parallel regions and sequential

regions, and then calculate their ratio. To calculate miss ratios (), we measure LLC misses

and total instructions, and then calculate their ratio. To calculate the remote memory access

ratio (

), we measure the requests of CPU to DRAM for a target memory node X.

 78

We validate the execution time (i.e. Equation 4.3-6) and energy (i.e. Equation 4.3-8)

against direct measurement at two memory frequencies (333MHz and 533MHz). This section

shows some of the validation results due to space limitation, but the complete validation

results can be found from our technical report. Table 4.4-3 summarizes the absolute relative

prediction error when changing the memory frequency.

Table 4.4-3 Relative prediction error with memory frequency set as 333MHz and

533MHz

Program

Error

333MHz 533MHz

Time Energy Time Energy

FT 8.60% 14.20% 7.80% 11.40%

EP 3.50% 3.60% 4.80% 4.30%

CG 12.60% 14.90% 14.20% 13.40%

SP 14.60% 14.20% 12.80% 16.50%

MG 18.90% 19.40% 17.20% 17.40%

BT 10.70% 14.10% 13.50% 16.10%

We selectively show the benchmarks EP, FP and SP for further discussion of our

validation because they consume small, moderate and large memory bandwidth, and hence

are representative of diverse workload characterization.

 79

Figure 4.4-1 Validation of the performance model by varying TLP and MLP

The left figures of each benchmark in Figure 4.4-1 shows the measured and predicted

performance when we change the number of threads. These experiments use a single memory

node to exclude NUMA effects. The figure shows that the prediction for EP achieves very

high prediction accuracy. In addition, we notice EP has small and values. The small

indicates that the benchmark has a small portion of memory instructions. The small

 indicates that the memory bandwidth utilization per core is low, so there are a small

number of memory stalls. These two application-dependent parameters indicate that

performance impacts from the memory system in the EP benchmark are small. For the FT

benchmark, our model prediction is also very close to the measured value. We further notice

that the best performance is achieved when the benchmark uses 12 cores. When the number of

cores goes beyond 12, we found the execution time increases. This is an indication that the

performance improvement due to the increase of TLP is outweighed by the extensive memory

 80

stalls due to the increase in memory access intensity. For the SP benchmark, we observe

similarities to FT when we scale the number of processor cores. The best performance for SP

is achieved at = 8. We observe that the CFM model underestimates the impact of memory

stalls for SP, but it still captures the general trends in performance.

The right figure for each benchmark on Figure 4.4-1 shows measured and predicted

performance as we change the number of memory nodes. These experiments use the maximal

number of cores (= 16) to stress out the memory system. We notice that we achieve high

prediction accuracy for EP. Also, we find there is no performance improvement when

increasing . Because EP benchmark does not have intensive memory accesses, increasing

m does not help to improve performance. For FT, our model also predicts its performance

very well. According to our model predictions, FT can achieve 1.09x when the number of

memory nodes is 4, close to the measurement (1.12x). For SP, the prediction accuracy is not

as good as EP and FT. In particular, our model largely underestimates the performance

improvement when the number of memory nodes is 4. This relatively low prediction accuracy

may be due to the employment of the abstract memory system model in Figure 4.2-2. With

the abstract memory system model required by the M/M/C model, there is only a single queue;

in a real NUMA system, the memory system can have multiple physical queues, each of

which corresponds to one memory controller. However, our prediction still accurately

captures the performance trends as we vary the number of memory nodes.

 81

Figure 4.4-2 Validation of the energy model by varying TLP

Lastly, Figure 4.4-2 shows the energy prediction accuracy for FT. We measure the

energy consumption using 1,4,8,12,16 cores and 4 memory nodes at the memory frequency

333MHz. We compare the measurement with our prediction. The average absolute error rate

is 11.4%.

In this section, we use the verified results and model prediction to analyze the impact of

TLP, MLP and memory frequency to performance and power by controlling and .

Furthermore, we use the to explore the effects of the three factors to search for optimal

energy consumption.

Figure 4.5-1 shows the impact of TLP. This figure shows the predicted CPI (for the

application), and the measured and predicted memory stall (i.e., CPI(γ) for the memory

system).

 82

Figure 4.5-1 The impact of TLP to performance and average memory stall per LLC miss

We run the experiments using a single memory node at the memory frequency 333MHz.

For CPI(γ) we use the PAPI RES STL performance counter to measure it. In the figure, we

notice that the CPI(γ) with FP and SP increase as the number of cores increases. For FP, the

predicted memory stall increases from 22 to 62. For SP, the predicted memory stall increases

from 24 to 178 cycles. This is an indicator of memory contention, because the memory access

becomes more intensive as the number of cores increases. For EP, however, we do not

observe the increase in memory stalls. This is because the memory stalls depend on the

memory bandwidth utilization per core (i.e., in our models). If is fairly small, (for EP,

 =2.56E-07), there is no serious memory contention along the data path, hence increasing

TLP does not lead to an increase in memory stalls. We further notice that the performance of

FT and SP degrades when the number of active cores increases from 12 to 16. This is an

indication that the benefit due to increasing TLP is outweighed by the memory contention.

To understand the impact of frequency, we use the CFM model to predict the

performance of FT at different memory frequencies and different levels of MLP. We

normalize the performance to the baseline run (). The

results are shown in Figure 4.5-2

 83

Figure 4.5-2 The impact of memory frequency to performance and system power

At 333MHz, the available memory bandwidth is insufficient to support memory requests

from cores, so we have the worst performance at this frequency. The performance degrades

due to increased memory contention when TLP is large (i.e. after). As we increase

the memory frequency, the performance keeps increasing as the number of memory nodes

increases. However, the increasing rate diminishes. This is an indication that the memory

bandwidth improvement due to frequency scaling cannot keep up with the increase of

memory access intensity as the number of memory nodes is increased.

Figure 4.5-3 The impact of the number of memory nodes to performance and system power

 84

Figure 4.5-3 shows performance and power consumption for the FT benchmark using 16

cores when increasing number of memory nodes from 1 to 4. We normalize the performance

to one memory node. In general, as we increase the number of memory nodes, the

performance increases from 5.45 to 6.13, and the power consumption increases from 141

Watts to 204 Watts.

We use the model to investigate energy improvement while varying MLP and

memory frequency. We set the baseline configuration (

 in the Equation 4.3-9. In the following analysis: we fix with maximal

TLP, and evaluate the optimal combination of and for the optimal energy

consumption. Figure 4.5-4 shows the for EP benchmark. EP is an embarrassingly

parallel benchmark. It is highly computation-intensive with small memory bandwidth

utilization. When the memory frequency scales from 333MHz to 533MHz, the goes

down from 11.2 to 10.09. This means increasing memory frequency does not improve

 for EP. This is because computation dominates the most of EP execution.

 85

Figure 4.5-4 Energy improvement of EP benchmark

Figure 4.5-5 Energy improvement of SP benchmark

Increasing memory frequency does not improve performance but consumes more

memory power due to rise of leakage power. In addition, increasing memory nodes from 1 to

4 reduces from 11.2 to 11.01, because the system consumes more static power when

 86

using more memory nodes. We also notice that scaling memory frequency has larger impact

to than increasing the number of memory nodes. This is because increasing the number

of memory nodes slightly increases background power consumption while leaving more

memory nodes idle and it does not significantly increase memory power. Increasing memory

frequency, however, can result in increase to both static power and dynamic power. The

optimal of EP is at configuration (16, 1, 333MHz).

Figure 4.1-1 shows the for FT benchmark which has higher memory bandwidth

utilization than EP. For FT, when the memory frequency scales up, the goes up from

4.54 (333MHz) to 6.36 (533 MHz) When we increase the number of memory nodes from 1 to

4, the improves from 4.54 to 6.05. The increased rate due to increasing number of

memory nodes is less than that due to memory frequency scaling. We attribute this different

increase rate to the NUMA effects to performance when accessing remote memory nodes.

Increasing the number of memory nodes can potentially suffer from NUMA effects and

degrade performance, hence negatively impacting energy improvement. In general, the

 model indicates the optimal of the FT benchmark is 6.36 using the configuration

(16, 1, 533MHz). This configuration improves 40% compared to the configuration (16,

1, 333MHz). (i.e., 6.36 v.s. 4.54).

Figure 4.5-5 shows the for SP consumes more memory bandwidth than FT. The

 behavior of SP is different from EP and FT. When increasing memory frequency, the

 improves from 3.29 (333MHz) to 3.85 (533MHz). When scaling the number of

memory nodes from 1 to 4, the increases from 3.29 to 4.35. We can see that the scaling

of frequency and memory nodes result in similar improvement in . However, the

optimal is 4.46 when the system uses 3 memory nodes at memory frequency 533MHz.

This improves 35% compared to the configuration (16, 1, 333MHz), (i.e., 4.46 vs.

3.29).

Based on these analyses, we conclude that we cannot tune TLP, MLP and memory

 87

frequency individually to get optimal energy consumption. The optimal configuration depends

on the application characteristics and the need to consider the combined effects of all three

factors.

In this chapter, we first propose a concurrency-frequency model and an energy

improvement model based on an M/M/C queuing model. The model predicts the application

CPI as a function of TLP, MLP and memory frequency to estimate the system performance.

Furthermore, our models show that the memory frequency, MLP and TLP have interacting

effects on performance and energy. We validate our models against direct performance and

energy measurements on an actual 16-way NUMA server. We demonstrate that the

model-guided optimization can improve energy consumption up to 40% for applications that

have high demand for memory bandwidth. The proposed model provides new insights that

consider the interactive effects among TLP, MLP and memory frequency on performance and

energy.

 88

This page intentionally left blank.

 89

The memory wall has long been a computing bottleneck, and it has been intensified by

the introduction of multi-core processors. While the primary concern of the memory wall

focuses on only bandwidth and latency, a new ―power wall‖ challenge emerges for scaling out

memory capacity within a reasonable power budget. When big data and HPC applications

drive demand for memory capacity, traditional DRAM technology, unfortunately, with high

static power will be less effective, and may not scale in terms of density and cost.

Previous work [66, 108, 144, 158, 159, 194, 196, 201, 209] has been proposed to address

the power wall problem through heterogeneous memories by exploiting DRAM for

performance and emerging NVRAM memory technologies, like phase change memory

 90

(PCM), [199], STT-RAM[36] and memristors[49, 63], for capacity and energy efficiency.

This work has proposed policies to control the trade-off between delivering performance and

improving energy consumption on two basic memory organizations illustrated in Figure

5.1-1.

Figure 5.1-1 Candidate heterogeneous main memory organizations. (a) PCache: a

hierarchical, inclusive system (b) HRank: a flat, exclusive system

Figure 5.1-1(a) shows a hierarchical, inclusive system. The first layer of memory (1LM)

is used as a buffer for the second layer of memory (2LM). The 1LM space is usually invisible

to the operating system (OS) and managed by the memory controller (MC)[158]. A few works

[142, 158] introduce policies to manage data for this hierarchical design. These policies treat

the 1LM as an associative cache and use LRU replacement to migrate pages. In this work, we

call these types of policy "PCache".

Figure 5.1-1 (b) shows a flat, exclusive system. In this design, the 1LM and the 2LM

have exclusive memory spaces. Both of the memory spaces are managed by the OS while the

MC supervises the page migrations. Several works [159, 196, 209] have proposed policies to

migrate pages in this flat design. These works use the following principles to design their

migration policies: (1) place the performance-critical pages in the 1LM for performance and

non-critical pages to the 2LM for low-power dissipation. (2) Rank pages based on the number

of references and access recency. (3) Periodically migrate pages between the 1LM and the

2LM based on the ranking history. We call these types of policy "HRank". Although the

 91

above two types of memory policies show promising features for future computing systems,

unfortunately, none of them are guaranteed to deliver and high performance and energy

efficiency. As we shall demonstrate later, the effectiveness of these policies depends on the

workload.

In this chapter, we propose HpMC, a new memory controller design which employs the

hybrid use of the PCache and HRank policies to deliver better performance and energy based

on system demand. The HpMC consists of a ―Hybrid-policies Switching Engine‖ (HpSE), and

several new components added to a vanilla MC to facilitate switching policies and migrating

pages. In addition, HpMC implements an ―Energy-aware Controller,‖ (EaC). The EaC uses a

locality engine, which periodically analyzes the degree of temporal locality based on reuse

distance. If the degree of temporal locality crosses a certain threshold, it switches to PCache

and switches back to HRank, or vice versa, to optimize energy consumption. We discuss the

design of HpMC, including the switching mechanism in HpSE, the frame updating

mechanism in the OS, and the potential cost of locality estimation in the EaC. HpMC is a

hardware-software coordinating mechanism and manages pages without the limitations of

previous work, including poor performance and energy caused by poor locality and high cost

from updating mechanism.

We evaluate the HpMC on our trace-based simulator, HMSim. HMSim uses AMD

SimNow[15] for the processor simulation to generate memory traces that feeds to

DRAMSim[164] to get cycle-accurate memory performance and energy estimation. SimNow

is a functional simulator, which enables 10-100x speedups over cycle-accurate approaches but

lacks timing precision and accuracy. We propose a novel IPC calibration model to improve

the precision and accuracy of the timing system in SimNow. In addition, we validate HMSim

against two state-of-art native systems by comparing their bandwidth, latency and power.

 92

Furthermore, we discuss our engineering efforts on re-architecting DRAMSim for the PCM

system, and validate the PCM performance by comparing the numbers against others in the

prevailing literature.

We use pF3D and LULESH, two representative HPC workloads, as our case studies to

understand how the PCache and HRank policies impact performance and energy. The results

demonstrate that both policies exhibit excellent performance and energy only for certain

workloads. We further analyze the spatial and temporal localities of over 3000 diverse

memory access patterns from the workloads of Coral Benchmarks[11] and lmbench [141],

and use the analyzed results to build the switching rule for the EaC to optimize energy.

HpMC can be configured in three modes: HRank-only, PCache-only and EaC mode. We

evaluate the HpMC performance using workloads from the Coral Benchmarks and lmbench

running on a 4-way, out of order processor. We compare the bandwidth, energy and latency of

HpMC using the three modes with a single layer DRAM system and a PCM system. The

results show that the HpMC delivers better energy efficiency compared with its HM

counterparts and improves energy consumption from 13% to 45% while providing almost the

same bandwidth and larger capacity than the DRAM system.

This work makes the following contributions:

• We propose a new memory controller design which employs the hybrid use of the

PCache and HRank policies to deliver better performance and energy. We conclude

that no single HM policy delivers better bandwidth and energy. Our study

demonstrates that better performance and energy can be achieved by hybrid use of

these policies through a well-designed MC.

• We analyze the spatial and temporal localities of over 3000 diverse memory access

patterns and identify the correlation between localities and energy consumption

using two policies.

• We validate our simulation framework against two state-of-art native machines and

 93

propose a novel timing calibration model to improve the accuracy of the simulation.

Both PCache and HRank policies are designed to exploit the combination of two memory

technologies into a single, heterogeneous system. They assume the 1LM is designed for

performance, and the 2LM is designed for high-capacity and low static power. We assume

DRAM technology for the 1LM and PCM technology for the 2LM in our work, but the

flexibility of our simulation framework will support other emerging memory technologies,

such as HMC [152], STT-RAM, [42], and memristors [49, 63].

Figure 5.2-1 Hybrid Policies Memory Controller simulation framework.

A block diagram of the major components of our HM simulation framework, HMSim, is

illustrated in Figure 5.2-1. In this section, we focus on the design of a hybrid policies memory

controller, HpMC. The HpMC consists of two parts: HMController and DRAMSim [164].

HMController is an in-house, programmable, AMD SimNow [15] analyzer that SimNow

loads into its execution environment. It is designed to process the read/write requests from the

LLC controller and route requests to specific memory layers based on policies. HMController

implements the two basic policies, PCache and HRank. It also implements a ―Hybrid-policies

 94

Switching Engine‖ (HpSE) and several logic blocks (illustrated in the shaded blocks in

Figure 5.2-1) to switch policies, manage frames and update migrations to the OS. We start

with a detailed implementation of the HRank and PCache designs. After that, we describe a

few new components added to a vanilla MC to assist the HRank and PCache and facilitate the

dynamic switching between them. Lastly, we discuss the DRAM and PCM physical interface,

simulated by the DRAMSim that estimates the cycle-accurate memory performance and

power.

1) PCache Policy: PCache is used to manage memory for the hierarchical, inclusive

system. We base our design on the best available [158] which uses the DRAM as a hardware

cache for the PCM. The PCM space is managed by the OS, and the DRAM is managed

entirely by the MC without the OS involvement when a frame miss happens in the DRAM.

The DRAM is implemented as an associative cache with an LRU replacement policy. On a

miss in the DRAM, the frame that contains the cache line in the PCM will be brought to the

DRAM. It uses an inclusion bit to indicate whether a frame holds a copy in PCM or not, and 8

dirty bits to track dirty sub-blocks of a frame. PCache adopts a lazy write-back strategy to

reduce the write operations to PCM. In the lazy write-back strategy, when a frame is evicted

in the DRAM, the write-back operation only happens when the inclusion bit is set to 0, or any

of the dirty bits is set 1. PCache leverages a Remap/Migration Table in MC to keep track of

the mapping between PCM frame IDs and DRAM frame IDs. When a memory request arrives,

the MC checks the Remap/Migration Table to see if the requested frame is cached in DRAM

or not. It also supports the line-level writes technique that the MC only writes dirty sub-blocks

back to PCM to reduce the traffic [158].

 95

2) HRank Policy: HRank is used to manage the flat, exclusive system. Our

implementation leverages the idea of hot-cold frames [159, 196, 204]. Previous work uses a

Multiple-Queue (MQ) ranking system [217] to rank the frames based on access recency and

adjacency. In contrast, our HRank implementation ranks the frames according to the number

of references. It updates the number of references of frames using a ranking list. For every 10

ms epoch, it re-selects the top-N hottest frames from the ranking list to move to the DRAM,

and keeps the rest of frames in the PCM. It maintains a hot and a cold list to keep track of hot

and cold frames. HRank compares the new ranking result with previous ranking result (in the

hot, cold lists) and decides which frames to move in/out of DRAM and PCM. It then

schedules migration frames to the queue of the Migration Engine. The HRank algorithm is

simple but effective. It simplifies the design of MC since it only needs to update the

references and rank/migrate frames every 10 ms. In contrast, MQ-based algorithms need to

update the entire complicated MQ ranking system and decide page migration whenever a

memory reference occurs
1
. HRank uses the Remap/Migration Table to keep the migration

history. The MC periodically updates the migration history in the Remap/Migration Table of

the OS to keep the system consistent and robust.

1) Switching Mechanism: HRank and PCache have a fundamental difference in memory

organization: PCache is an inclusive system in that the 1LM space is invisible to the OS,

while HRank is an exclusive system that both 1LM and 2LM spaces can be seen by the OS.

When HpSE switches from one policy to another, it needs to guarantee the OS is aware of the

change to the inclusion/exclusion property.

1
 Ramos et al. improved the MQ algorithm by filtering out some rapid-fire accesses. However, it needs to control

the filtering threshold to avoid hot frames stay in the PCM.

 96

When HpSE decides to switch from PCache to HRank, 1)the HpSE interrupts the CPU

and notifies the OS to update the page table entries (PTEs); 2) the OS replaces the old PCM

frame IDs with new DRAM frame IDs in PTEs and flushes the corresponding TLB entries

according to the Remap/Migration Table; 3) the HpSE frees the PCM frames stored in the

Remap/Migration Table since the HRank does not need the PCM space to hold duplicates; 4)

the HpSE cleans up the information in the Remap/Migration Table and uses it to track the

migration history.

When the HpSE switches from HRank to PCache, it needs to change from the exclusive

property to inclusive property. First, the HpSE notifies the Migration Engine to cancel

scheduled migrations and cleans up the Remap/Migration Table. Second, the HpSE starts to

the restore inclusive property. The HpSE checks the hot list in the HRank policy to get

DRAM frame IDs and allocates unused frames in the PCM to restore the <DRAM,PCM>

mapping in the Remap/Migration Table. If PCM does not have enough unused space to

restore the inclusive property, the HpSE needs to vacate the least frequently used frames in

PCM by checking the cold list for sufficient space. The HpSE then moves the vacated frames

to a removing list. Lastly, the HpSE notifies the OS to replace old DRAM frames with new

PCM frames in the PTEs based on the new Remap/Migration Table. If the HpSE sends the

remove list information to the OS, the OS invalidates the corresponding PTEs in the page

table and flushing TLB entries and programs the DMA engine to write dirty frames back to

the hard disk.

The Remapping/Migration table is used in both of the PCache and HRank policies. Each

entry of the table has two columns to record frame IDs and several bits. In the PCache policy,

two columns are used to track the mapping between DRAM frame IDs to PCM frame IDs. In

 97

the HRank policy, the two columns are used to track migration history. The first column

records the source frame IDs and the second column records the destination frame IDs. The

MC periodically updates the migration history to the OS to keep the system robust and

efficient. Each entry has an inclusion bit and 8 dirty bits used in the PCache policy as

described before.

In addition, we leverage other work [159] which uses two additional bits in the

Remapping/Migration table for the communication between the MC and OS. The first is the

Migrating bit. When the bit is set, it means that the frame is currently in migration status. The

second is the Replacing bit, which is set by the OS when the OS is replacing the content of the

frame. The OS is responsible for the Replacing bit and the MC is responsible for the

Migrating bit. To maintain the robustness of the system, Replacing and Migrating bits are

exclusive and cannot be set at the same time. The Remap/Migration Table is maintained by

both the MC and OS. To guarantee the atomic operation on the table, the OS and MC use a

memory-mapped register in the MC as the atomic operation token.

The Migration engine uses a queue to record the scheduled migrations. It processes the

migrations sequentially. In each migration, it reads the source frame into a buffer and sets the

Migrating bit to 1. Once the Migrating bit is set, it writes the content of the buffer to the new

destination and resets the Migrating bit when it finished. When a memory request arrives, it

checks the Migrating bit to see if the frame is undergoing the transfer. During the migration, if

the memory request is READ, it reads the data from the source frame; if the request is

WRITE, the Migration Engine cancels the migration and finishes the write operation.

 98

The Energy-aware Controller (EaC) periodically uses the locality engine to keep track of

the reuse distance distribution to calculate the degree of temporal locality, Mt. EaC switches

between PCache and HRank policies to optimize energy based on the degree of the Mt. As we

shall demonstrate later, the energy consumption of both policies has a strong correlation to the

Mt. Reuse distance analysis is a popular tool for predicting locality and performance.

However, several works [103, 169] have shown that the performance penalty is a major

drawback of the tool in software-based, cache systems. Zhong and Chang report 2-4x

slowdown using compiler-based instrumentation for single-thread benchmarks [41]. Schuff et.

al. report averaging 29x slowdown with 19.6% sampling rate for multi-thread benchmarks

[169].

We argue that the overhead of reuse distance in main memory is negligible and feasible

for online estimation with the help of additional hardware for the following two reasons: 1)

The traffic in main memory is 40-100x smaller than in the cache system. Thus, the estimation

overhead can be drastically reduced. 2) Several stochastic models have been proposed to

approximate the reuse distance online with small computation cost. Shen et. al. [171]

proposed a small hardware analysis device with a stochastic model that maps cheaper time

distance to a more expensive reuse distance within 1% prediction error. Their approach can

achieve the reuse distance estimation within 3-8 us. Since the updating period of the EaC is 10

ms in our implementation, the computation overhead (3-8 us) for Mt is relatively small and

negligible. For the space overhead, the locality engine uses sixteen 64-bit counters to estimate

Mt. Each counter i stores the number of memory references that the reuse distance is between

2
i
to 2

i+1
. Thus, the space overhead is only 128Bytes.

 99

HMSim uses a trace-based approach to simulate the system. It has two steps. In the first

step HMSim uses the HMController to collect memory traces of DRAM and PCM during the

execution. In the second step, HMSim feeds the memory traces to the DRAMSim to analyze

the performance and energy. HMSim leverages the DRAMSim to simulate the DRAM and

PCM PHY interface.

DRAMSim is a cycle-accurate memory system simulator designed for modeling DRAM

DDRx memory systems. It models a memory controller to issue commands to DRAM devices.

The memory system contains load/store queues and a command queue, and maintains the

bank states of all DRAM devices to simulate the performance. DRAMSim simulates different

types of DDRx technology through device ini files, which parameterizes major characteristics

of the DDRx timing mechanism. In addition, we re-architect memory array architectures in

the DRAMSim to simulate the PCM memory system. For convenience in our discussion, we

call the re-architected DRAMSim for the PCM system, PCMSim. The PCM performance

simulated by PCMSim is discussed in the validation section.

A key challenge for enabling high-performance heterogeneous memories is to design a

cost-effective metadata system (e.g., Remapping/Migration table) at a fine granularity. Table

5.2-1 shows the storage overhead of the HpMC with 1GB DRAM + 8GB PCM memory. For

each component in the HpMC, HRank needs 9MB in total to maintain the hot, cold and

ranking lists. PCache only needs the Remapping/Migration Table to track the DRAM and

PCM mapping. Thus, we assume PCache use 0MB in Table 5.2-1. In addition, each entry in

the Remapping/Migration table requires 55bits for storing tags (22*2 bits two column frame

IDs, 1 inclusion bit, 8 dirty bits, 1 migrating bit, 1 replacing bit). The queue size of the

 100

Migration Engine is 1.5MB (44bits for source and destination frame IDs * 256K queue size).

Lastly, the locality engine needs 128 Bytes to track the reuse distance distribution in our

implementation. The total storage overhead for 1GB DRAM + 8GB PCM memory setting is

12.26 MB. For fast access, we assume that the storage in all the components in the MC is

made of SRAM.

Table 5.2-1 STORAGE OVERHEAD

Component Storage overhead

HRank

9MB

16bits reference counter* (256K hot list + 2M cold list + 2.25M ranking list)

PCache 0MB

Migration Engine
1.5MB

44 bits * 256K entries

Remap/Migration

Table

1.75MB

55 bit tags* 256K entries

Locality Engine
128Bytes

16 counters * 64bits

Total Size 12.26MB

HMSim uses AMD SimNow for the processor simulation. AMD SimNow is an

x86-compatible, multi-core simulation platform. It is a functional simulator in that its device

models maintain the program-visible machine state, but the device models abstract the timing

feature for faster simulation of the entire computer system. Although HMSim can leverage

 101

faster simulation in SimNow to explore applications at large scale, accuracy is a major

challenge.

The basic timing unit of SimNow is an instruction; all instructions are assumed to execute

in the same amount of time and are one clock cycle in length. This assumption may overlook

the performance when long latency events (e.g. memory and page fault) dominate the

execution. It is common that intensive memory events may cause inevitable memory stalls,

and memory latency is longer than one clock cycle. The assumption in SimNow that "IPC is

equal to 1" for every application is over-simplified and can skew performance estimation.

Fortunately, SimNow provides an interface to set an IPC value for each application. We

use the MEM.BW benchmark from lmbench to illustrate how the IPC setting affects memory

bandwidth in Figure 5.2-1.

Table 5.3-1 The effect of the SimNow IPC on bandwidth

We ran the MEM.BW multiple times in HMSim simulating a single-layer DRAM system

and manually varied the IPC from 0.05 to 1.0. In each run, we measured the SimNow LLC

 102

controller bandwidth and collected its memory trace. We fed the trace to DRAMSim to

simulate the memory bandwidth of an 8GB, 4channel, DRAM DDR3-1333MHz system. The

result shows that the bandwidth request from the LLC controller is proportional to the IPC

settings in SimNow. In addition, DRAMSim result shows that the DRAM system bandwidth

is saturated when IPC is greater than 0.4. This result indicates the IPC value configured in

SimNow significantly impacts the demand for bandwidth from the LLC controller and the

memory system performance estimation. Setting the IPC equal to 1 for all applications would

lead to inaccuracies. For example, MEM.BW setting IPC to 1 generates 142GB/sec from the

SimNow LLC Controller to the memory system (DRAM), and this number is far beyond what

most contemporary computing systems can accomplish.

We also want to ensure the performance estimation of PCM system is within the ballpark

of performance numbers found in the extant literature. Despite similarities to conventional

DRAM memory array architectures, PCM requires solutions to several drawbacks before it

can see widespread adoption as an alternative of DRAM, including long latency, high energy

of write operations and limited endurance.

We need to address both aforementioned challenges: 1) direct timing calibration against

local systems, and 2) comparison to other prevailing systems mentioned in the literature. To

address these challenges, we divide the validation into two parts. In the first part, we describe

a timing calibration model to predict a proper IPC to calibrate SimNow performance. We then

compare the simulated results after the model calibration with two native computing systems

to show that the HMSim framework is sufficiently accurate for performance evaluation. In the

second part, we discuss our efforts on re-architecting the DRAMSim for the PCM system, and

validate the simulation performance by comparing with systems described in the prevailing

 103

literature.

The main architectural characteristics of the simulation framework are listed in Table

5.3-2. In this work, HMSim simulates a four-core, out-of-order processor equipped with an

8MB, 2-way instruction and data cache. The HMSim simulates a two-layer, heterogeneous

memory system. It has four DRAM channels and four PCM channels; each channel has two

DIMM ranks. In all simulations, it assumes no cold page faults and all data are all in 2LM.

The DRAMSim and PCMSim use the close-page policy initially.

Table 5.3-2 SIMULATION SYSTEM CONFIGURATION

Feature Value/Configuration

Processor

Processors (800MHz, x86-ISA) 4-way out-of-order processor

I/D Cache 2-way, 128M lines, 64 Byte

TLB 128-entries

Cache block size/ page size 64 Byte/4KB

Memory Systems

Memory Controller

1333MHz, 4channels, 8KB row size,

close page,

Mapping Scheme 7

Memory Devices (8x width,

1.5V)
DRAM PCM[24], [35]

Delay

tRCD 15ns 55ns

tRAS 36ns 71 ns

tRC 51ns 126 ns

tRP 15ns 55 ns

Current

Idd0 130mA 240mA

Idd 2N 40mA 40mA

Idd 3N 62mA 62mA

Refresh 240mA 0mA

We validated HMSim performance against two native computing systems. The first

system was a single-socket server with an 8-way (2x hyper-threading) Intel Westmere

processor and an integrated memory controller supporting 3 memory channels of DDR3

 104

DIMM; each DIMM has 2GB memory capacity. The second one is a server specifically

designed for optimizing performance and energy efficiency. It has an 8-way (2x

hyper-threading) Intel Haswell processor and dual-channel DDR3 memory system with 8GB

capacity.

1) IPC Calibration Model:

We propose an IPC calibration model to calibrate the SimNow timing mechanism. The

goal of the model is to predict a proper IPC value for each application to generate the same

amount of demand for bandwidth from the SimNow LLC controller as that found in native

machines. The model predicts the IPC of an application in SimNow by using the input from

the native execution. The input includes the native measured IPC and a set of hardware event

rates (). We select events listed in Table 5.3-4 that are critical to system

performance, including the memory controller reads and writes, L1, L2, L3 hits, floating point,

branch, and TLB misses. All selected events can be found in most contemporary processors.

Each event rate, , is the number of occurrences of event i divided by the number of elapsed

processor cycles during the execution. We model the SimNow IPC as a linear function of the

native IPC and event rates:

Equation 5.3-1: ∑

We trained the relation in Equation 5.3-1 with event coefficients by

using multivariate regression. We first collected the IPC, event rates and bandwidth from

benchmarks listed in Table 5.3-3 as training samples from native machines. We then ran the

same benchmark on the HMSim using a single-layer DRAM and manually selected the

SimNow IPC value that generates the same amount of bandwidth from the SimNow LLC

Controller as the bandwidth collected in native machines to be the prediction target. We list

the coefficients used in the model after training in Table 5.3-4 . In the next section, we

 105

compare the performance of HMSim using the IPC calibration model with the two state-of-art

computing systems described above.

Table 5.3-3 BENCHMARKS FOR EVALUATION

Program Description Source

CNS.STENCIL
A simple stencil-based test code for

computing the hyperbolic components

ExaCT Co-Design

Center

UMTmk

A microkernel performing three dimensional,

nonlinear, radiation transport calculation CORAL

Benchmark

CORAL Benchmark

Graph500
A scalable data generator and a BFS search

kernels
CORAL Benchmark

MILCmk
A microkernel for the MIMD Lattice

Computation (MILC) collaboration
CORAL Benchmark

AMGmk
A microkernel for parallel algebraic multi-grid

solver for linear systems
CORAL Benchmark

LULESH
A proxy-app for the hydrodynamics

simulation
CORAL Benchmark

pF3D
A parallel code for laser plasma interactions

simulation
LLNL NIF

MEM.BW
A benchmark from lmbench to measure the

memory bandwidth
lmbench

MEM.LATE
A benchmark from lmbench to measure the

memory latency
lmbench

Table 5.3-4 IPC MODEL EVENTS AND COEFFICIENTS

Event Coefficient Event Coefficient

IPC 0.36 FLOAT_INS 0.15

L1_HIT 1.31 TLB_MISS 0

L2_HIT 0.175 MEM_RD 5.07

L3_HIT 0 MEM_WR 10.7

BRANCH_INS -0.66

 106

We validated the performance of HMSim configured with a single-layer DRAM system

using three benchmarks: MEM.BW, MEM.LATE and AMGmk by comparing simulated

bandwidth, latency and power with the results measured in the two native systems. The

memory bandwidth and latency validation with the Westmere machine and the memory

power validation with the Haswell machine are discussed below:

1) Bandwidth: We ran MEM.BW to compare the bandwidth in eight operation modes (rd,

wr, cp, frd, fwr, fcp, bzero, bcopy, rdwr). We used the LIKWID [191]tool to measure the

native memory bandwidth on the Westmere platform. The LIKWID tool counted the total

number of DRAM CAS read and write commands issued on all channels from the integrated

memory controller. Each DRAM CAS read and write command transfers 64 bytes of data

(JDEDEC standard). The native bandwidth was calculated as the total transferred data size

divided by the elapsed time. The top left chart in Figure 5.3-1 shows the normalized

bandwidth from HMSim and the Westmere system. The results are in different operation

modes with an average error rate is 6.1%.

2) Latency: We used the MEM.LATE benchmark from lmbench and varied stride sizes

from 64 to 4096 to validate the latency. On the Westmere system, we used the Intel VTune

Amplifier [7] to measure the memory latency distribution using different stride sizes.

According to the Intel spec[1], we excluded the events smaller than 32 cycles (i.e. oncore

accesses) to ensure the memory accesses are all uncore events and calculated average latency.

The top right chart in Figure 5.3-1 shows the normalized simulated and native measured

latencies. We normalized all simulated and native results to MEM.LATE.64 (i.e. stride size

=64). In both simulation and native results, we can see the latency reduces when the stride

size increases. This is because, when the MEM.LATE benchmark traverses same size of data,

larger strides access the memory system less frequently than smaller strides and alleviate the

 107

waiting time in the transaction queue of the MC. Although the degree of degradation is

different, we can see HMSim still gracefully captures the trend of degradation.

3) Power: The bottom chart in Figure 5.3-1 shows the normalized power using

MEM.BW, MEM.LATE and AMGmk. We ran AMGmk with three input sizes: 50,100, 200.

We measured the native DRAM power through the Intel RAPL [59] on the Haswell machine.

RAPL is a counter-based weighted model that estimates the DRAM power as a function of

activity counters and pre-defined associated weights. The counters used in RAPL are

described in a related paper [59]. DRAMSim uses a different method to model the power. It

uses elapsed cycles and currents of different CAS commands to estimate power. Although

they use different modeling approaches, the power estimation in DRAMSim still captures the

trend as we measured in the Haswell. Our validation shows that, although the HMSim does

not simulate identical results to those measured in native machines, it remains sufficiently

accurate for performance evaluation.

Figure 5.3-1 HMSim memory bandwidth, power and latency comparison with native

systems

 108

A PCM cell is a 1T/1R device, comprised of a storage resister and an NMOS access

transistor. The storage resistor is typically a chalcogenide alloy. Ge2SB2Te5 is the most

common material used in PCM. The PCM cell operates in two states. SET state represents bit

value 0 and the crystalline phase while RESET state represents bit value 1 and the amorphous

phase of the chalcogenide. PCM can be arranged in multiple level cells (MLCs) to store more

states (phases) by applying different levels of heat that represent more bits. Our PCM system

assumes three-bit MLCs, which provides four times the density of DRAM [27] [158] and

gives the PCM similar cell area () compared to DRAM (). Thus,

PCM can leverage most CMOS peripheral circuitry used in traditional DRAM with minimal

modifications. PCM cells might be hierarchically organized into ranks, banks, and blocks.

Despite similarities to conventional DRAM memory array architectures, PCM has several

drawbacks including limited endurance, increased write energy and latency; these must be

addressed before widespread adoption in hierarchical or flat memories. The techniques to

address these drawbacks include wear-leveling techniques [156, 158, 216] to remove

non-uniformity writes to prolong the lifetime of system; buffer reorganization techniques to

improve locality and reduce the delay and energy gap [80, 111]; partial writes techniques [111]

[89, 155, 204] to trace data modification to improve endurance and energy; and the PreSET

technique [24], which executes a PreSET operation for a memory line as soon as the line

becomes dirty in the cache. Thus, all PCM cells that are required in a write operation have

been SET prior to the write to reduce the latency.

In this work, we built a PCM simulator, PCMSim. It re-architects DRAM memory logic

from DRAMSim. PCMSim adopts buffer reorganization [111] and Data-Comparison Write

(DCW) [204] techniques to improve PCM write latency and energy efficiency. We do not

explicitly implement the wear-leveling since endurance is out the scope of this study, but

buffer reorganization and DCW techniques may at least partially address the PCM endurance

 109

issue. In addition, we assume future PCM systems support a PreSET-like mechanism, in

which case, the write latency is effectively the faster ―RESET‖ latency instead of slower

"SET" latency.

Figure 5.3-2 MEM.BW Performance on PCM and DRAM(DDR3) systems

We compare the PCM and DRAM performance by analyzing MEM.BW using the

PCMSim and DRAMSim. Both memory systems used four channels and 8GB capacity.

Figure 5.3-2 shows the performance of the two systems. The x-axis of the first three charts

represents elapsed epochs. The unit of the epoch is 10 ms. The top left chart shows the total

number of computation instructions and memory instructions to interpret the ratio of

computation and memory activities. The top right shows the bandwidth variation of DRAM

and PCM systems over time. The average DRAM bandwidth is 28.8GB/sec, and the average

 110

PCM bandwidth is 14.2GB/sec. The average DRAM latency is 359 ns, and the average PCM

latency is 755 ns. The result shows that, under high-bandwidth conditions, DRAM

outperforms than PCM. DRAM can support up to 2.0x bandwidth, 0.5x in access delay and

consume 40% energy compared to PCM.

Table 5.3-5 PCM V.S DRAM PERFORMANCE CHARACTERISTICS

Performance PCM DRAM Ratio Range

READ latency 55 ns 15 ns 3.7 3 - 6

WRITE latency 55 ns 15 ns 6 5 - 30

READ energy 3.56 pJ/bit 1.04 pJ/bit 3.4 2 - 8

WRITE energy 12.35 pJ/bit 0.35 pJ/bit 35.5 10 -100

Figure 5.3-3 Power Breakdown of PCM and DRAM(DDR3) systems using MEM.BW

 111

Figure 5.3-3 shows the power consumption of the two systems. The peak power of PCM

is 20.1 Watts and 8.2 Watts for DRAM power. We further break down the power into

background, refresh, burst, read and write power. The simulation results show that PCM

dissipates less static power (i.e. background) than the DRAM system. We summarize the

simulated performance of PCM and DRAM in Table 5.3-5 and compare the numbers with

recent literature [36, 85, 105, 111, 172]. The third column shows the ratio of PCM to DRAM

performance in terms of latency and energy. The fourth column shows the range of the ratio

suggested by the literature survey. Table 5.3-5 shows the simulation results are within the

ballpark of the recent literature survey.

We start with pF3D and LULESH, two representative HPC workloads, as case studies to

analyze the bandwidth and energy of the HpMC using PCache and HRank polices. In addition,

we analyze how dynamic spatial and temporal locality impacts energy consumption of both

policies, and use the analyzed results to build the switching rule for the EaC to optimize

energy.

pF3D: Figure 5.4-1 shows the pF3D performance of HpMC using PCache and HRank policies.

From a bandwidth perspective, the average bandwidth of the DRAM and PCM in PCache is

8.17GB/sec and 0.76GB/sec. These values include the migration traffic between the DRAM and

PCM. From the processor point of view, it can safely ignore migration traffic. Thus, we exclude

the migration traffic to get the effective processor bandwidth. For the PCache policy, the

 112

effective bandwidth is calculated using the Equation 5.4-1. Based on the Equation 5.4-2, the

effect processor bandwidth is 7.43 GB/sec in the pF3D (i.e. 8.17-0.76).

Figure 5.4-1 pF3D performance comparison using HRank and PCache policies in the

HpMC

Equation 5.4-1:

In contrast, the average bandwidth of the DRAM and PCM in HpMC using HRank policy

is 8.6GB/sec and 3.12GB/sec. The effective processor bandwidth for the HRank policy is

estimated by the Equation 5.4-2.

Equation 5.4-2:

 and represent the traffic between the processor and the two memory layers,

and represents the migration traffic between the DRAM and PCM. Thus, the

 113

effective processor bandwidth in HRank is 11.49 GB/sec (i.e.

).

In the pF3D case, HRank provides more bandwidth than PCache since HRank allows the

processor to access the PCM directly.

From an energy perspective, PCache consumes 167.6J energy during the execution and

HRank consumes 218J. PCache use 24% less energy than HRank. When analyzing the traffic

of the two policies, we found that, in PCache, the processor accessed 91.81GB of data in the

DRAM while only 2.83 GB of data was from the PCM due to DRAM misses. In contrast, the

processor accessed 21.44GB of data in the PCM and 73.45 GB of data in the DRAM when

using the HRank policy. The additional memory accesses in PCM in the HRank system, lead

to higher energy consumption for HRank versus the PCache in the pF3D case.

LULESH: Figure 5.4-2 shows the LULESH performance using both policies. Based on

Equation 5.4-3.and Equation 5.4-2, HRank provides 7.99GB/sec effective processor

bandwidth while PCache delivers 7.91GB/sec, similar to HRank. From an energy perspective,

HRank consumes 20% less energy than PCache (157.3J vs. 192.6J). We further analyze the

traffic between DRAM and PCM for the two systems. PCache needs to transfer 24.49 GB of

data between the DRAM and PCM to meet demand; 38.17GB of data from the processor. The

effective processor bandwidth is only 61% (

) of the total 1LM bandwidth. 39% of

the 1LM bandwidth was used for data migrations between the DRAM and PCM. In the

previous pF3D case, PCache only needs to transfer 2.83GB of data between the DRAM and

PCM to meet 91.81GB processor demands. The effective bandwidth is 97% of the total 1LM

bandwidth.

 114

Figure 5.4-2 LULESH performance comparison using HRank and PCache policies in

the HpMC

In conclusion, we found that for certain workloads, HRank provides extra bandwidth due

to the direct access to the PCM. We also found that when the DRAM hit rate was low, the

PCache policy using LRU replacement became too aggressive in migrating data between the

DRAM and PCM. The aggressive LRU replacement dampened the effective processor

bandwidth and wasted energy due to excessive migrations. In contrast, HRank effectively

delays the migrations. The periodical migration strategy in HRank conserves more energy

when the DRAM hit rate becomes low.

According to the above case studies, PCache leverages memory accesses with high hit

rates in DRAM to conserve energy (pF3D). In contrast, HRank conserves more energy when

DRAM hit rates are low (Lulesh). These findings lead to another consideration: can we

leverage application locality to intelligently select the policy that conserves energy?

 115

Hit rate can be characterized by two factors: access adjacency (spatial locality) and

recency (temporal locality). To understand impact of locality on energy consumption, we use

previously proposed metrics [197] to quantify the spatial and temporal locality of an

application. The spatial locality is defined in Equation 5.4-4. denotes the fraction of

total memory accesses that are of page stride length i. An application that has all pages stride

1 references is assigned a value of 1; an application where half of the memory references are

stride 1 and the other half stride 2 is assigned a value of .75, and so forth.

Equation 5.4-4 : ∑

In addition, we quantify the temporal locality using the metric in Equation 5.4-5. The

metric is based on the notion of the distance of data reuse. The reuse distance of some

memory references to an address A is the number of memory references that have been

accessed since the last access to A. In Equation 5.4-5, N denotes the longest reuse distance

we traced (N= 512 in our study); is the temporal reuse function and represents the

fractions of memory references with reuse distance less than or equal to i. The temporal

locality metric, Mt, is less intuitive than the spatial locality metric. We can visualize that the

Ms value estimates the area under the plot of the temporal reuse function, , of the

application. Since is monotonically increasing, the Mt value of an application that has

more temporal locality is larger, because more memory references have low reuse distances.

Equation 5.4-5: ∑

The Mt and Ms scores range between [0,1]. Higher scores mean better locality than lower

scores. The access stride and reuse distance are inherent program properties and independent

 116

from any memory design. Thus, they are good indicators for program locality. To investigate

the correlation of locality and energy consumption of two policies, we built a 2D (Ms, Mt)

locality map for each benchmark listed in Table 5.3-3. Results for pF3D, LULESH, AMGmk,

MILCmk, Graph500 and UMTmk are shown in Figure 5.4-3. The x-axis of each map

represents Ms and y-axis represents Mt. A circle at position (x,y) on the map represents a small

period (10 ms epoch) of execution in an application with Ms = x and Mt = y estimated from

memory traces of the period. We also estimated the energy consumption of the epoch using

PCache and HRank policies and chose the resulting lowest energy policy as the winning

policy. If PCache wins in an epoch with the locality scores Ms = x and Mt = y, the map plots a

green circle at position (x,y) on the map; if HRank wins, the map plots a blue circle. The size

of the circle is used to represent the ratio of energy consumption of the losing policy to the

winning policy. The bigger the circle, the better energy saving of the winning policy over the

losing one. We analyzed diverse memory patterns from over 3000 epochs from the above

benchmarks. In Figure 5.4-3, we see PCache wins for most epochs in pF3D, MILCmk and

UMTmk. Since the circles in the MILCmk and UMTmk are small, there is not much energy

difference between two policies. We also observed that blue circles dominate in the LULESH

case while some green circles clustered on the top-right.

 117

Figure 5.4-3 The correlation between locality and energy consumption of HRank and

PCache policies

In addition, the rightmost charts show statistical histograms of occurrences of Ms and Mt

values from the winning policy of all epochs in all applications. In the Ms histogram, we see

both policies mixed spanning from 0.1 to 1. This result indicates that Ms is not a good

indicator for selecting the winning policy. Spatial locality may be adversely affected by

multi-core, out-of-order, parallel execution. In contrast, the Mt histogram shows that the

PCache policy favors higher Mt (greater than 0.65) while the HRank system favors lower Mt

(less than 0.65). When the Mt is high, the data in a page will be reused again soon and the

page has a higher chance of remaining in DRAM without being evicted. In contrast, when Mt

is low, the reuse of a page in DRAM is low, and the page has a higher chance of being evicted

in the PCache policy, resulting in more energy consumed in migration. In this case, HRank

can reduce energy consumption by less frequently migrating data and simply allowing the

processor to access the PCM directly.

We now show the energy consumption of EaC mode in the HpMC. EaC enables

dynamically switching between PCache and HRank policies. The EaC periodically checks the

temporal locality, Mt, and decides if it needs to switch to another policy or not. EaC sets the

switching period to be 10ms and uses the locality engine to calculate Mt. Based on previous

Mt histogram results, we build a switching rule as follows: If Mt ≥0.65, EaC switches to

PCache mode. If Mt < 0.65, EaC switches to HRank mode. Figure 5.5-1 illustrates the energy

consumption of PCache mode, HRank mode and EaC mode of pF3D and LULESH. The

results indicate that the hybrid approach using EaC intelligently selects the low energy system

 118

over time with negligible prediction error. It improves energy consumption by 23%(

)

in pF3D and 20%(

) in LULESH, compared with the worst case energy use.

Figure 5.5-1 Energy consumption of PCache, HRank and EaC modes

We evaluate the performance of the HpMC using three modes: PCache, HRank and EaC

modes. We compare them with a DRAM-only system and a PCM-only system. The DRAM

system uses 64GB, single-layer, 4-channels, DDR3- 1333 memory. The PCM system also

uses a single-layer memory with 64GB capacity. We select 64GB for the DRAM and PCM

systems as the base memory capacity since this is the common setting for state-of-art HPC

systems. In the HpMC configuration, we use 8GB DRAM in the 1LM and 64GB PCM in the

2LM. The 1:8 ratio of 1LM to 2LM is our empirical selection which balances performance

and energy consumption. We use the benchmarks listed in Table 5.3-3 to evaluate the

performance and the result is illustrated in Figure 5.5-2. We sorted the benchmarks based on

DRAM system bandwidth from left to right.

 119

Figure 5.5-2 Bandwidth, energy, latency comparison of DRAM, PCM, and three

modes in HpMC

The top chart in Figure 5.5-2 shows the effective processor bandwidth calculated using

Equation 5.4-1 and Equation 5.4-2. We normalized the bandwidth to the DRAM system.

The MEM.BW benchmark is used to measure the peak bandwidth of all settings. In

MEM.BW, DRAM delivers best bandwidth performance, and PCM provides about 70% the

bandwidth of DRAM. In HpMC, the HRank mode can deliver roughly the same bandwidth as

the PCM while PCache has the worst bandwidth performance. This is because the MEM.BW

benchmark is programmed to sequentially access memory addresses. Thus, the spatial and

temporal localities are very low. In this case, PCache mode becomes inefficient since the

policy design only allows the processor to access the DRAM, and much of DRAM bandwidth

is used for data migration. Instead, HRank mode allows the processor to directly access the

PCM and thus provides more bandwidth. We see the same phenomenon in pF3D, AMGmk,

 120

Graph500 and UMTmk. In UMTmk and Graph500, we found HRank bandwidth performance

is even better than DRAM. This is due to more bank conflicts in the DRAM.

The middle chart in Figure 5.5-2 provides the energy consumption. We normalized the

energy to DRAM. In the low bandwidth scenario (i.e. applications on the left), PCM

consumes less energy than DRAM due to less static power dissipation. When bandwidth

increases from left to right, the energy ratio of PCM to DRAM also increases from 0.59

(CNS.STENCIL) to 1.92 (MEM.BW), because PCM uses more dynamic write power than

DRAM. We found PCache and HRank modes conserved more energy than traditional DRAM

in all cases except MEM.BW. The energy savings ranged from 13% to 45%. The PCache

conserved more energy than HRank in MEM.BW, pF3D, MILCmk, UMTmk and

CNS.STENCIL benchmark while HRank conserved more in LULESH, AMGmk and

Graph500. In the EaC mode, we can see that EaC dynamically choses the lowest energy

policies to optimize energy, however it may sacrifice performance on certain workloads (i.e.

MEM.BW and pF3D).

The bottom chart in Figure 5.5-2 reports latency of all memory systems. *.1LM and

*.2LM represent the DRAM and PCM latency of the HpMC using three modes. We only

model the latency of memory systems without consideration for the cost for MC migration

and OS update since they are not always on the critical path of a memory access. In low and

moderate bandwidth scenarios (i.e. CNS.STENCIL to AMGmk), we can see the latency of

three HpMC modes are similar to the DRAM system. In the high bandwidth scenario (i.e.

LULESH, PF3D and MEM.BW), we see the PCM latency in the three modes of HpMC is

higher than the DRAM system. This is inevitable since the PCM is highly utilized; however,

the latency can be hidden by a high degree of parallelism on the processor.

 121

 PCache: The implementation of PCache policy is similar to the LRU policy in the

systems. The migration unit of PCache is a page, not a cacheline. The cost of a page miss in

the DRAM is high because the MC needs to migrate 4KB data per DRAM miss by default.

PCache uses the lazy write-back strategy to trace the dirty sub-blocks and only write the

dirty sub-blocks to the PCM. This strategy reduces the total migration traffic between the

DRAM and the PCM. The lazy write-back strategy works well in cache systems; however, it

could be a potential issue when we apply it to HM. The space overhead of the metadata

system needed for the DRAM cache to trace dirty sub-blocks is significant. In addition, the

MC needs fast access to the metadata to keep a low latency when the MC updates the state

of pages in the metadata system. Recent works [96, 102, 128, 157] propose new designs

using SRAM, 3D die-stacked DRAM to improve metadata system performance. This work

only discusses the space overhead, but we need a deeper understanding of the metadata

system performance. Some cost models are required to estimate the performance and the

power of the metadata systems.

 In addition, PCache relies on a high hit rate of the DRAM. When the DRAM hit rate is

low, the DRAM will sacrifice a large portion of bandwidth for data migration, and this

affects the available bandwidth for the processor. Based on our observation, PCache

performs poorly for low spatial and temporal workloads because low locality means a low

hit rate in the DRAM. We use pF3D and Graph500 to explain it. pF3D demonstrates high

locality due to its stencil execution behavior. Graph500 exhibits low locality behavior due to

its bread-first search kernels. Figure 5.6-1 and Figure 5.6-2 shows the traffic of Graph500

and pF3D. In Graph500, we see the HM system needs to migrate 10.97 GB size of data

between the DRAM and the PCM (i.e. 1LM-2LM) for 55.57 GB of data from the processor

 122

to DRAM. The ratio of migration for Graph500 is 19.74 percent (

). On the other hand,

we see the HM system only needs to migrate 2.83 GB size of data between the DRAM and

the PCM (i.e. 1LM-2LM) for 91.87 GB of data from the processor to the DRAM. The ratio

of migration for Graph500 is 3 percent (

).

Figure 5.6-1 Traffic of Graph500 using PCache policy

Figure 5.6-2 Traffic of pF3D using PCache policy

 123

 HRank: HRank policy uses a different strategy to migrate pages. It does not migrate a

page when a miss happens in the DRAM. Instead, it periodically ranks the number of

accesses of all pages and moves the performance-critical pages to the DRAM. The slow

response strategy benefits low locality workloads because it lets the processor directly

access the page in the PCM and avoids migrating the page to the DRAM, because the

migration tends to be less useful due to low spatial or temporal locality. The epoch length is

a major factor that affects the policy’s performance. If the epoch length is too short, the

HRank policy cannot trace enough ranking information to migrate performance-critical

pages to the DRAM. In addition, the short epoch length also leads to performance overhead

due to frequent migration. On the other hand, if the length is too long, it may cause the

performance-critical pages to stay too long in the PCM, harming the overall system

performance and consuming extra energy. The proper choice of epoch length is the key to

performance and energy efficiency of the HRank policy. In our study, we manually selected

10ms as the default setting based on our system settings. However, the length of the epoch

depends on several factors, including the DRAM size and the frequency of the memory bus.

One of our future works will provide a sensitivity analysis for the epoch length to different

system settings.

 Summary: First, we found that, for high-temporal locality workloads, the MC needs to

apply PCache policy to conserve energy; for low-temporal locality workloads, the MC can

choose HRank to conserve energy. Second, the hierarchical, inclusive memory organization

used for PCache policy only lets the processor access the DRAM. The PCM is used for

migration when the DRAM misses or pages write-back. The processor cannot leverage the

PCM bandwidth from this organization. On the other hand, the flat, exclusive organization

used in the HRank policy provides extra PCM bandwidth for the processor due to direct

access; however, this organization causes long access latency in the PCM. For HPC

applications with high memory bandwidth requests, I suggest using flat organization with

 124

HRank policy since the latency can be hidden by a high level of processor concurrency in

the HPC systems.

 In previous sections, we demonstrated how we leverage the locality analysis to help HM

systems improve performance and energy consumption. The variation of locality comes

from different memory access patterns. In this section, we discuss how different memory

access patterns affect the performance of policies. We use a matrix multiplication to

illustrate the impact. Sparse matrix multiplication is the most time-consuming part in PDE

(Partial Differential Equation) solvers, which are widely used in many HPC applications.

Figure 5.6-3 Pseudo codes of matrix multiplication using (i, j, k) and (k, j, i) memory

access patterns.

 Figure 5.6-3 shows two pseudo codes of matrix multiplication using two memory access

patterns. The left codes use (i, j, k) order in the loops. The right codes use (k, j, i) in the

loops. The two codes yield the same results in matrix C, but the right codes have a larger

memory access stride than the left codes. It is easy for programmers to write their own codes

Matrix multiplication

Memory Access Pattern: Loops (i, j, k)

#define N 1024

matrix multiplication (i, j, k)

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0;k<N; k++)

{

 C[i][j] += A[i][k]*B[k][j];

};

Matrix multiplication

Memory Access Pattern: Loops (k, j, i)

#define N 1024

matrix multiplication (k, j, i)

for(k=0; k<N; k++)

for(j=0; j<N; j++)

for(i=0;i<N; i++)

{

 C[i][j] += A[i][k]*B[k][j];

};

 125

similar to the example in the right if they do not consider the memory access patterns.

However, it could lead to serious performance issues in HM systems.

 The problem size of the matrix multiplication is 24MB. In our simulation, we set the

DRAM size to 8MB and the PCM size to 1GB. This setting tries to make more misses in the

DRAM. Table 5.6-1 shows the performance of the matrix multiplication using two memory

access patterns. In the (i, j, k) loops order case, we found PCache and HRank have almost

identical performance. However, in the (k, j, i) loops order case, we observed that PCache

has a significant amount of data migration traffic (i.e. 44.85 GB) between the DRAM and

the PCM. This is because the memory accesses in (k, j, i) loops have large stride sizes and

tend to cause more misses in the DRAM. One cacheline (i.e. 64 Bytes) miss needs to evict a

page out from the DRAM and install a page from the PCM (i.e. 8KB). The miss penalty is

very high. This example shows it is difficult for program developers to choose the best

policy based on the memory access patterns in their code. It is better to have an interface,

such as pragmas, APIs, or compiler speculations, to provide detailed memory access

information for HM systems to decide migration policies.

Table 5.6-1 Performance of the matrix multiplication using two memory access patterns.

Memory Access Pattern Policy Bandwidth Migration Traffic DRAM Hit Rate

Loops (i, j, k)
PCache 9.7GB/s 0.02GB 0.99

HRank 9.7GB/s 0.04GB 0.98

Loops (k, j, i)
PCache 9.6GB/s 44.85GB 0.81

HRank 9.7GB/s 0.06GB 0.98

 Heterogeneous memories provide an alternative choice for HPC systems to improve

performance, capacity, and energy. It is still unclear how to manage pages in the HM system

 126

for the HPC community. This work provides insights on how we can leverage different

management policies to benefit HPC workloads. For HPC application developers, they may

want to have explicit control of page migrations to optimize the performance and energy

consumption of their applications. However, poor page management leads to potential

performance and energy loss. The matrix multiplication example in Section 5.6.2 shows it is

hard to rely wholly on programmers to manage pages to optimize performance and energy.

Future HM systems should provide a set of migration policies for different execution

requirements. In addition, the operating systems and programming models should also

provide an interface (i.e. APIs or Pragma) for programmers. The interface can provide some

details of memory access patterns in their applications and communicate with the HM

system to choose the right policy.

In this work, we propose, HpMC, a new memory controller design which employs the

hybrid use of the PCache and HRank policies to deliver better performance or energy based

on the needs of a system. We also propose an energy-aware mechanism, which dynamically

switches between PCache and HRank to conserve energy based on the degree of temporal

locality. We compare HpMC with two single-layer, DRAM and PCM systems using the

workloads from the lmbench, pf3D and Coral HPC benchmarks. The results show that the

HpMC delivers higher energy efficiency compared with best available HM approaches and

improves energy consumption from 13% to 45% while providing the same bandwidth and

capacity of a traditional DRAM system.

We conclude that no single management policy delivers optimal bandwidth or energy.

Our system demonstrates that better performance and energy can be achieved by hybrid use of

these policies through a well-designed MC.

 127

This page intentionally left blank.

 128

The increasing number of available hardware resources on multicore, multi-memory

architectures for high-performance systems have stimulated the research community to

reconsider theories, techniques, and system designs to improve performance and energy

consumption. More recently, many in the research community have discussed the introduction

of heterogeneity to processors and memory systems to address the scaling challenges;

however, such approaches introduce additional complexity into the system design. Resource

management and energy-aware computation are two major challenges for scalable execution

on emerging systems.

This dissertation presented a series of approaches and techniques to resolve the problems

of resource management for energy efficiency on multicore, multi-memory systems.

 129

We started with research on thread-management problems to improve performance and

energy efficiency on NUMA systems. We presented a technique for determining the number

of threads using an architecture-aware artificial neural network (ANN). We presented a

critical-path, thread-mapping algorithm to minimize memory contention. We also presented a

DyNUMA runtime system incorporating the above two techniques to dynamically manage the

thread resources and validate the runtime for three diverse platforms.

We found that any attempt to throttle concurrency on a NUMA system after execution

begins will redistribute computation between cores, thereby forcing extraneous cache misses,

remote memory accesses, and contention. Prior work on DCT overlooked this problem,

resulting in serious performance and energy loss. We extended the previous IPC-based DCT

performance model and propose a new architecture-aware, ANN model to predict the thread

concurrency. The model mapped the topology of the ANN to the NUMA architecture to

capture the performance variation due to different thread mappings. In addition, we invented a

heuristic thread-mapping algorithm to determine the best mapping configuration to minimize

the memory contention and optimize performance and energy. We implemented a DyNUMA

runtime system that employed the ANN predictor and thread-mapping arbiter in conjunction.

The runtime system automatically changed the thread concurrency and mapping during the

execution. We evaluated the runtime system using the NAS and Sequoia Benchmarks on three

different NUMA platforms. Our runtime achieved an 8.7% improvement in wall-clock time

on average, 16% improvement in EDP, and 12.3% improvement in MFLOPS/Watt.

Next, we presented a novel analytical model for NUMA memory systems using queuing

methods. Previous work based on the ANN and critical-path thread mapping techniques only

 130

considered performance and the energy impact of thread resources. The new models also took

memory resources into consideration, including memory-level parallelism (MLP) and

memory frequency. The models considered the combined interactive effects of these factors

on system performance and energy, and overcame the limitations of previous works wherein

they only considered these impacts in isolation. The model can help system resource

managers to understand the tradeoff between performance and energy in a broader perspective.

We investigated and evaluated the model on a 16-way multicore NUMA platform. We

showed that significant energy benefits can be brought about from concurrency throttling,

MLP throttling, and DFS.

We first investigated the memory system design on modern multicore NUMA systems.

We found that the memory system performance is determined by three important factors,

namely thread-level parallelism (TLP), MLP, and memory frequency. In particular, high-level

TLP results in intensive memory bandwidth, which in turn causes memory contention in

multiple memory components, such as the memory bus, memory controller, and DRAM chips.

In addition, MLP also affects the performance of the memory system. MLP determines the

theoretical bandwidth’s upper bound; by changing the data distribution between memory

nodes, MLP techniques can control how many memory nodes should be used during the

execution. Last, the memory controller frequency decides how soon a memory request can be

served, and this affects the memory latency and bandwidth. Unlike previous models that have

analyzed single factors in isolation, our queuing models predict the combined effects of the

three factors mentioned above, which dominate memory performance. We validated our

model against a 16-way system with four sockets, each of which had one quad-core processor.

Each processor in the socket had an integrated memory controller with a 16 GB DDR3

memory system. Our validation results showed that the models could predict performance and

energy consumption within the 11.3% and 13.1% error.

We then used the model to analyze the impact of the TLP, MLP, and memory frequency

 131

and used it to search for the optimal configuration. We demonstrated that the model-guided

optimization can improve energy consumption up to 40% for applications that exhibit a high

demand for memory bandwidth. To conclude, this model provides a new direction for

designing new mechanisms that consider the interacting effects among TLP, MLP, and

memory frequency to improve both performance and energy for future high-performance

computing systems.

Lastly, we focused on the memory management of future heterogeneous memory systems.

We presented a new memory controller design that combines the best aspects of two baseline

heterogeneous memory management policies to manage page resources on heterogeneous

memories. We validated our memory controller design in a simulation framework against real

hardware on two state-of-the-art HPC servers. We investigated the impact of two policies on

performance and energy using HPC workloads, and analyzed the effect of spatial and

temporal locality on the energy consumption of both policies. Based on our locality analysis,

we proposed a new energy-aware hierarchical memory management policy that dynamically

switches between the two policies to optimize energy. The major conclusions and

contributions for the three parts of the research are summarized below.

In the third part of the research, we first analyzed two baseline heterogeneous memory

organizations and policies, namely PCache and HRank. We argued that neither of these can

sustain high performance and low energy consumption across a range of HPC workloads.

Thus, we proposed HpMC, a new memory controller design that selectively employs and

alternates between PCache and HRank policies to deliver better performance and lower

energy consumption. HpMC implements a policy-switching engine (PSE) and several new

components that extend a vanilla MC to facilitate switching policies and migrating pages. In

addition, HpMC implements an energy-aware controller (EaC). The EaC uses a

 132

locality-monitoring engine that periodically analyzes temporal locality based on reuse

distance. We defined a temporal locality degree metric used as a guide to switch between

PCache and HRank policies, in order to optimize energy consumption. We analyzed the

spatial and temporal locality of over 3,000 diverse memory access patterns arising in the

Coral Benchmarks and lmbench. We used the results of this experiment to build an

energy-optimizing policy switching scheme in the EaC. The results showed that the HpMC

reduces energy consumption by 13% to 45% compared to its counterparts, while providing

almost the same bandwidth and larger capacity than a DRAM-only system. We concluded

that better performance and energy can be achieved via the use of hybrid memory

management policies through a well-designed memory controller.

In this dissertation, we proposed a number of methods and technologies to enable

resource management and energy-aware computing on emerging heterogeneous, multicore,

multi-memory HPC systems. However, there are still many topics that have not been fully

explored. Some example research topics are summarized below.

Combined, total system heterogeneity

Reducing power consumption has become critical across all parts of HPC design. HPC

venders want improved energy efficiency per computing unit to reduce the total energy cost.

Likewise, HPC system managers want to reduce peak power consumption to improve fault

tolerance of all system operations. In addition, HPC systems need to keep scaling out the

computational ability within a reasonable power budget.

Recent work evaluates and explores the performance and energy consumption for

CPU+MIC [170] or CPU+GPU [176] designs. Although these works show promise for

 133

heterogeneous system design, the potential of heterogeneous system architectures for HPC

systems has not been fully investigated.

We are interested in combining our studies of heterogeneous memories with

computationally heterogeneous systems. Our simulation framework (Chapter 5) should

provide a foundation for exploring this complicated problem space. This is a major topic for

exploration in future work.

Models of combined, total-system performance and energy

To address the power limits of future systems, we need new cost metrics and models to

compare the energy efficiency of new system designs. In Chapter 3, we proposed models that

can capture essential factors impacting performance and energy efficiency. Although these

models can predict performance and energy on a multicore NUMA architecture, it is less clear

how they can be extended to predict the performance and energy of different heterogeneous

system architectures. Our current models implicitly assume that all hardware resources are

homogeneous. In other words, they assume that the computing systems employ the same

CPUs and the same memory nodes in the NUMA architecture. In addition, they assume that

computing systems only use a flat NUMA memory system. With the introduction of

heterogeneous memories, future memory systems may have multiple memory layers. The first

layer of memory could be for performance, while the second is for capacity under power

constraints. The possibilities are almost endless and models will play a key role in evaluating

new designs. Initially, we plan to extend the current models to predict new heterogeneous

system designs by adding performance and power parameters that consider heterogeneity.

Resource Management Automation in Emerging Systems

We believe future systems will be heterogeneous in all aspects. This means runtime

systems will be required to evaluate the tradeoffs of resource management in an effort to meet

user demand efficiently. With future models that consider heterogeneity, we can build

sophisticated runtime systems to automatically adapt the programming or system behavior in

 134

intelligent ways to carry out an efficient execution. This approach can be leveraged to

automatically (1) identify bottlenecks in different system layers, and (2) evaluate the cost of

different resource allocations and select the best solution at a fine granularity.

Initially, we can extend the runtime system implemented in Chapter 3, which currently

uses DCT and a thread mapping arbiter to allocate thread resources. In the future, the runtime

system will incorporate different NUMA data allocation policies to manage data in a

heterogeneous memory system and provide a more efficient way to improve thread-and-data

affiliation.

 135

This page intentionally left blank.

 136

[1] "Intel® 64 and IA-32 Architectures Optimization Reference Manual". Intel

Corporation 2009.

[2] "Micron DDR Power Spreadsheet". Micron Technology, Inc, 2009.

[3] "NVIDIA Next Generation CUDA Compute Architecture:Fermi". Nvidia Inc.,

2012.

[4] "TILEPro64 Processor". Tilera Inc., 2012.

[5] "TN-41-01-Calculating Memory System Power for DDR3". Micron Technology,

Inc, 2009.

[6] "US department of energy annual report", 2010 http://www.eia.doe.gov/

[7] "Intel® VTune™ Amplifier XE 2013 ". Intel Inc., 2013

http://software.intel.com/en-us/intel-vtune-amplifier-xe

[8] "Intel® Many Integrated Core Architecture", 2012

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrate

d-core/intel-many-integrated-core-architecture.html

[9] "Intel Parallel Advisor". Intel Corporation, 2014

 http://software.intel.com/en-us/articles/intel-parallel-advisor/

[10] "Tilera TilePro64 Processor", 2012 http://www.tilera.com/

[11] "CORAL Benchmarks". LLNL, 2014 https://asc.llnl.gov/CORAL-benchmarks/

[12] "512Mb: x4, x8, x16 DDR SDRAM Features". Micron Technology, Inc, 2007

 http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf

[13] "Calculating DDR Memory System Power", 2007

http://www.micron.com/~/media/Documents/Products/Technical/Note/DRAM/TN460

3.pdf

[14] "TOP500 Supercomputer Site", http://www.top500.org

[15] "AMD SimNow Simulator". AMD 2014

http://developer.amd.com/tools-and-sdks/cpu-development/simnow-simulator/

[16] "CPUSpeed". Carl Thompson, 2012

http://www.carlthompson.net/software/cpuspeed

http://www.eia.doe.gov/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://software.intel.com/en-us/articles/intel-parallel-advisor/
http://www.tilera.com/
http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf
http://www.micron.com/~/media/Documents/Products/Technical/Note/DRAM/TN4603.pdf
http://www.micron.com/~/media/Documents/Products/Technical/Note/DRAM/TN4603.pdf
http://www.top500.org/
http://developer.amd.com/tools-and-sdks/cpu-development/simnow-simulator/
http://www.carlthompson.net/software/cpuspeed

 137

[17] "Oprofile Performance Monitoring Tool", 2014

http://oprofile.sourceforge.net/news/

[18] "Rambus - DRAM Power Model". Rambus Inc., 2010 www.rambus.com/energy/

[19] "Calculating Memory System Power for DDR2". Micron Inc., 2011

http://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/tn4

704.pdf

[20] "WattsUp Meter Tool", 2014 https://www.wattsupmeters.com

[21] Abts, D., Jerger, N. D. E., Kim, J., Gibson, D. and Lipasti, M. H. "Achieving

Predictable Performance Through Better Memory Controller Placement in Many-Core

CMPs". SIGARCH Comput. Archit. News, 37(3), pp. 451-461, 2009.

[22] Aggarwal, N., Cantin, J. F., Lipasti, M. H. and Smith, J. E. "Power-Efficient

DRAM Speculation". Proceedings of the International Symposium on

High-Performance Computer Architecture (HPCA'08), 2008.

[23] Ahn, J. H., Jouppi, N. P., Kozyrakis, C., Leverich, J. and Schreiber, R. S. "Future

scaling of processor-memory interfaces". Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, (SC'09), 2009.

[24] Amdahl, G. M. "Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities". Proceedings of the April 18-20, 1967, spring joint

computer conference (AFIPS '67), Atlantic City, New Jersey, 1967.

[25] Awasthi, M., Nellans, D. W., Sudan, K., Balasubramonian, R. and Davis, A.

"Handling the Problems and Opportunities Posed by Multiple on-Chip Memory

Controllers". Proceedings of the 19th International Conference on Parallel

Architectures and Compilation Techniques (PACT'10), Vienna, Austria, 2010.

[26] Azimi, R., Tam, D. K., Soares, L. and Stumm, M. "Enhancing Operating System

Support for Multicore Processors by Using Hardware Performance Monitoring". ACM

Operating Systems Review (SIGOPS'09), pp. 56-65, 2009.

[27] Bae, C. S. "Dynamic adaptive resource management in a virtualized numa

multicore system for optimizing power, energy, and performance". Northwestern

University, 2013.

[28] Bailey, D. H. "Performance and the NAS Parallel Benchmarks". International

Journal of High Performance Computing Applications, 5(3), pp. 63-73, 1994.

[29] Barbeau, M. and Kranakis, E. "Principles of ad hoc networking". Wiley, 2007.

[30] Bardhan, S. and Menascé, D. A. "Analytic Models of Applications in Multi-core

Computers". Proceedings of the 2013 IEEE 21st International Symposium on

http://oprofile.sourceforge.net/news/
http://www.rambus.com/energy/
http://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/tn4704.pdf
http://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/tn4704.pdf
http://www.wattsupmeters.com/

 138

Modelling, Analysis & Simulation of Computer and Telecommunication Systems,

2013.

[31] Bartal, Y., Charikar, M. and Indyk, P. "On Page Migration and Other Relaxed

Task Systems". Theor. Comput. Sci., 268(1), pp. 43-66, 2001.

[32] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,

Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,

Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R. S., Yelick,

K., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,

Franzon, P., Harrod, W., Hiller, J., Keckler, S., Klein, D., Kogge, P., Williams, R. S.

and Yelick, K. "ExaScale Computing Study: Technology Challenges in Achieving

Exascale Systems Peter Kogge, Editor & Study Lead". 2008.

[33] Bianchini, R. and Rajamony, R. "Power and Energy Management for Server

Systems". Computer, 37(11), pp. 68-76, 2004.

[34] Blagodurov, S., Zhuravlev, S. and Fedorova, A. "Contention-Aware Scheduling

on Multicore Systems". ACM Trans. Comput. Syst., 28(4), pp. 1-45, 2010.

[35] Blagodurov, S., Zhuravlev, S., Fedorova, A. and Kamali, A. "A Case for

NUMA-Aware Contention Management on Multicore Systems". Proceedings of

the 19th international conference on Parallel architectures and compilation

techniques (PACT'10), Vienna, Austria, 2010.

[36] Burr, G. W., Kurdi, B. N., Scott, J. C., Lam, C. H., Gopalakrishnan, K. and

Shenoy, R. S. "Overview of Candidate Device Technologies for Storage-class

Memory". IBM J. Res. Dev., 52(4), pp. 449-464, 2008.

[37] Cameron, K. W., Ge, R. and Feng, X. "High-Performance, Power-Aware

Distributed Computing for Scientific Applications". Computer, 38(11), pp. 40-47,

2005.

[38] Carrera, E. V., Pinheiro, E. and Bianchini, R. "Conserving Disk Energy in

Network Servers". Proceedings of the 17th ACM International Conference on

Supercomputing (ICS'03), San Francisco, CA, USA, 2003.

[39] Caulfield, A. M., Coburn, J., Mollov, T., De, A., Akel, A., He, J., Jagatheesan, A.,

Gupta, R. K., Snavely, A. and Swanson, S. "Understanding the Impact of Emerging

Non-Volatile Memories on High-Performance, IO-Intensive Computing".

Proceedings of the ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis(SC'10), 2010.

[40] Chandra, R., Devine, S., Verghese, B., Gupta, A. and Rosenblum, M.

"Scheduling and Page Migration for Multiprocessor Compute Servers". SIGOPS Oper.

Syst. Rev., 28(5), pp. 12-24, 1994.

 139

[41] Charles, J., Jassi, P., Ananth, N. S., Sadat, A. and Fedorova, A. "Evaluation of

the Intel Core i7 Turbo Boost feature". Proceedings of the 2009 IEEE

International Symposium on Workload Characterization (IISWC'09), 2009.

[42] Chen, E., Apalkov, D., Diao, Z., Driskill-Smith, A., Druist, D., Lottis, D., Nikitin,

V., Tang, X., Watts, S., Wang, S., Wolf, S. A., Ghosh, A. W., Lu, J. W., Poon, S. J.,

Stan, M., Butler, W. H., Gupta, S., Mewes, C. K. A., Mewes, T. and Visscher, P. B.

"Advances and Future Prospects of Spin-Transfer Torque Random Access Memory".

IEEE Transactions on Magnetics, 46(6), pp. 1873-1878, 2010.

[43] Chen, G. and Stenstrom, P. "Critical Lock Analysis: Diagnosing Critical Section

Bottlenecks in Multithreaded Applications". Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis(SC'12), Salt Lake City, Utah, 2012.

[44] Chen, Z., Lu, Y., Xiao, N. and Liu, F. "A hybrid memory built by SSD and

DRAM to support in-memory Big Data analytics". Knowl. Inf. Syst., 41(2), pp.

335-354, 2014.

[45] Cho, S. and Jin, L. "Managing Distributed, Shared L2 Caches through OS-Level

Page Allocation". Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO'39), 2006.

[46] Cho, S. and Lee, H. "Flip-N-Write: A Simple Deterministic Technique to

Improve PRAM Write Performance, Energy and Endurance". Proceedings of the

42th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'42),

2009.

[47] Cho, S. and Melhem, R. G. "On the Interplay of Parallelization, Program

Performance, and Energy Consumption". IEEE Trans. Parallel Distrib. Syst., 21(3),

pp. 342-353, 2010.

[48] Choi, J. W., Bedard, D., Fowler, R. and Vuduc, R. "A Roofline Model of

Energy". Proceedings of the 2013 IEEE 27th International Symposium on Parallel

and Distributed Processing, 2013.

[49] Chua, L. O. "Memristor-The missing circuit element". IEEE Transactions on

Circuit Theory, 18(5), pp. 507-519, 1971.

[50] Cuppu, V. and Jacob, B. "Concurrency, Latency, or System Overhead: Which

Has the Largest Impact on Uniprocessor DRAM-System Performance?". Proceedings

of the 28th annual international symposium on Computer architecture (ISCA'01),

2001.

[51] Cuppu, V., Jacob, B., Davis, B. and Mudge, T. "A Performance Comparison of

Contemporary DRAM Architectures". Proceedings of the 26th International

Symposium on Computer Architecture (ISCA'99), 1999.

 140

[52] Curtis-Maury, M., Blagojevic, F., Antonopoulos, C. D. and Nikolopoulos, D. S.

"Prediction-Based Power-Performance Adaptation of Multithreaded Scientific Codes".

IEEE Trans. Parallel Distrib. Syst. (TPDS'08), 19(10), pp. 1396-1410, 2008.

[53] Curtis-Maury, M., Dzierwa, J., Antonopoulos, C. D. and Nikolopoulos, D. S.

"Online Power-Performance Adaptation of Multithreaded Programs Using Hardware

Event-Based Prediction". Proceedings of the 2005 ACM/IEEE conference on

Supercomputing (SC'05), 2006.

[54] Curtis-Maury, M., Shah, A., Blagojevic, F., Nikolopoulos, D. S., de Supinski, B.

R. and Schulz, M. "Prediction Models for Multi-Dimensional Power-Performance

Optimization on Many Cores". Proceedings of the 17th international conference on

Parallel architectures and compilation techniques (PCAT'08), 2008.

[55] Curtis-Maury, M., Singh, K., McKee, S. A., Blagojevic, F., Nikolopoulos, D. S.,

de Supinski, B. R. and Schulz, M. "Identifying Energy-Efficient Concurrency Levels

Using Machine Learning". Proceedings of the 2007 IEEE International Conference

on Cluster Computing, 2007.

[56] D'Auria, B. "A short note on the monotonicity of the Erlang C formula in the

Halfin-Whitt regime". Queueing Syst, 71(4), pp. 469-472, 2012.

[57] Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B., Quema,

V. and Roth, M. "Traffic management: a holistic approach to memory placement on

NUMA systems". SIGARCH Comput. Archit. News, 41(1), pp. 381-394, 2013.

[58] David, H., Fallin, C., Gorbatov, E., Hanebutte, U. R. and Mutlu, O. "Memory

Power Management via Dynamic Voltage/Frequency Scaling". Proceedings of the

8th ACM international conference on Autonomic computing, Karlsruhe, Germany,

2011.

[59] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R. and Le, C. "RAPL:

Memory Power Estimation and Capping". Proceedings of the 16th ACM/IEEE

International Symposium on Low Power Electronics and Design, 2010.

[60] Delaluz, V., Kandemir, M., Vijaykrishnan, N., Sivasubramaniam, A. and Irwin,

M. J. "DRAM Energy Management Using Software and Hardware Directed Power

Mode Control". Proceedings of the International Symposium on High-Performance

Computer Architecture (HPCA'01), 2001.

[61] Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T. F. and Bianchini, R.

"MultiScale: memory system DVFS with multiple memory controllers". Proceedings

of the ACM/IEEE international symposium on Low power electronics and design,

2012.

[62] Deng, Q., Meisner, D., Ramos, L., Wenisch, T. F. and Bianchini, R. "MemScale:

Active Low-Power Modes For Main Memory". Proceedings of the sixteenth

 141

international conference on Architectural support for programming languages and

operating systems (ASPLOS'11), Newport Beach, California, USA, 2011.

[63] Di Ventra, M., Pershin, Y. V. and Chua, L. O. "Circuit Elements With Memory:

Memristors, Memcapacitors, and Meminductors". Proceedings of the IEEE, 97(10),

pp. 1717-1724, 2009.

[64] Diener, M., Cruz, E. H. M., Navaux, P. O. A., Busse, A., Hei, H.-U. and #223.

"kMAF: automatic kernel-level management of thread and data affinity".

Proceedings of the 23rd international conference on Parallel architectures and

compilation, Edmonton, AB, Canada, 2014.

[65] Diniz, B., Guedes, D., Wagner Meira, J. and Bianchini, R. "Limiting the Power

Consumption of Main Memory". SIGARCH Comput. Archit. News, 35(2), pp.

290-301, 2007.

[66] Dong, X., Xie, Y., Muralimanohar, N. and Jouppi, N. P. "Simple but Effective

Heterogeneous Main Memory with On-Chip Memory Controller Support".

Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis (SC'10) 2010.

[67] Eyerman, S. and Eeckhout, L. "Modeling Critical Sections in Amdahl's Law and

its Implications for Multicore Design". Proceedings of the 37th annual

international symposium on Computer architecture (ISCA'10), Saint-Malo, France,

2010.

[68] Fan, X., Ellis, C. and Lebeck, A. "Memory Controller Policies for DRAM Power

Management". Proceedings of the international symposium on Low power

electronics and design, Huntington Beach, California, USA, 2001.

[69] Fedorova, A., Seltzer, M. and Smith, M. D. "Improving Performance Isolation on

Chip Multiprocessors via an Operating System Scheduler". Proceedings of the

16th International Conference on Parallel Architecture and Compilation Techniques

(PACT'07), 2007.

[70] Feng, W.-c. "Making a Case for Efficient Supercomputing". Queue, 1(7), pp.

54-64, 2003.

[71] François, B., Nathalie, F., Brice, G., Raymond, N. and Pierre-André, W.

"Dynamic Task and Data Placement over NUMA Architectures: An OpenMP

Runtime Perspective". Proceedings of the 5th International Workshop on OpenMP:

Evolving OpenMP in an Age of Extreme Parallelism, 2009.

[72] Freeh, V. W. and Lowenthal, D. K. "Using Multiple Energy Gears in MPI

Programs on a Power-Scalable Cluster". Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, Chicago, IL, USA,

2005.

 142

[73] Fu, C., Zhao, M., Xue, C. J. and Orailoglu, A. "Sleep-aware variable partitioning

for energy-efficient hybrid PRAM and DRAM main memory". Proceedings of the

2014 international symposium on Low power electronics and design, La Jolla,

California, USA, 2014.

[74] Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J., Sahay,

V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R., Daniel, D., Graham, R. and

Woodall, T. "Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation". Springer Berlin Heidelberg, 2004.

[75] Ge, R., Feng, X., Burtscher, M. and Zong, Z. "Performance and Energy

Modeling for Cooperative Hybrid Computing". Proceedings of the 2014 9th IEEE

International Conference on Networking, Architecture, and Storage, 2014.

[76] Ge, R., Feng, X. and Cameron, K. W. "Improvement of Power-Performance

Efficiency for High-End Computing". Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 11 - Volume

12, 2005.

[77] Ge, R., Feng, X. and Cameron, K. W. "Modeling and Evaluating

Energy-Performance Efficiency of Parallel Processing on Multicore Based Power

Aware Systems". Proceedings of the 23th IEEE International Parallel and

Distributed Processing Symposium (IPDPS'09), 2009.

[78] Gross, D., Shortle, J. F., Thompson, J. M. and Harris, C. M. "Fundamentals of

Queueing Theory". Wiley-Interscience, 2008.

[79] Guan, N., Stigge, M., Yi, W. and Yu, G. "Cache-Aware Scheduling and Analysis

for Multicores". Proceedings of the seventh ACM international conference on

Embedded software, Grenoble, France, 2009.

[80] Gulur, N. D., Manikantan, R., Mehendale, M. and Govindarajan, R. "Multiple

Sub-row Buffers in DRAM: Unlocking Performance and Energy Improvement

Opportunities". Proceedings of the 26th ACM International Conference on

Supercomputing (ICS'12), 2012.

[81] Gupta, V. and Nathuji, R. "Analyzing Performance Asymmetric Multicore

Processors for Latency Sensitive Datacenter Applications". Proceedings of the

2010 international conference on Power aware computing and systems, Vancouver,

BC, Canada, 2010.

[82] Gustafson, J. L. "Reevaluating Amdahl's law". Commun. ACM, 31(5), pp.

532-533, 1988.

[83] Hackenberg, D., Molka, D. and Nagel, W. E. "Comparing Cache Architectures

and Coherency Protocols on x86-64 Multicore SMP Systems". Proceedings of the

42th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'42),

 143

New York, New York, 2009.

[84] Hall, M. W. and Martonosi, M. "Adaptive Parallelism in Compiler-Parallelized

Code". Proceedings of THE 2ND SUIF COMPILER WORKSHOP, 1997.

[85] Halupka, D., Huda, S., Song, W., Sheikholeslami, A., Tsunoda, K., Yoshida, C.

and Aoki, M. "Negative-resistance read and write schemes for STT-MRAM in 0.13

CMOS". Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010.

[86] Ham, T. J., Chelepalli, B. K., Xue, N. and Lee, B. C. "Disintegrated control for

energy-efficient and heterogeneous memory systems". Proceedings of the 2013

IEEE 19th International Symposium on High Performance Computer Architecture

(HPCA), 2013.

[87] Hanumaiah, V., Vrudhula, S. and Chatha, K. S. "Performance Optimal Online

DVFS and Task Migration Techniques for Thermally Constrained Multi-Core

Processors". IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 30(11), pp. 1677-1690, 2011.

[88] Hashemi, A. H., Kaeli, D. R. and Calder, B. "Efficient Procedure Mapping Using

Cache Line Coloring". Proceedings of the ACM SIGPLAN conference on

Programming language design and implementation, Las Vegas, Nevada, USA, 1997.

[89] Hay, A., Strauss, K., Sherwood, T., Loh, G. H. and Burger, D. "Preventing PCM

Banks from Seizing Too Much Power". Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO'44), 2011.

[90] Haykin, S. "Neural Networks -- a Comprehensive Foundation, Prentice Hall".

Prentice Hall, 1999.

[91] Hill, M. D. and Marty, M. R. "Amdahl's Law in the Multicore Era". Computer,

41(7), pp. 33-38, 2008.

[92] Hoelzle, U. and Barroso, L. A. "The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines". Morgan and Claypool Publishers,

2009.

[93] Hom, J. and Kremer, U. "Inter-Program Optimizations for Conserving Disk

Energy". Proceedings of the 2005 International Symposium on Low Power

Electronics and Design, (ISLPED '05), 8-10 Aug. 2005.

[94] Hsu, C.-H. and Feng, W.-C. "A Power-Aware Run-Time System for

High-Performance Computing". Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, (SC'05), 12-18 Nov.

2005.

[95] Hsu, C.-H. and Kremer, U. "The Design, Implementation, and Evaluation of a

 144

Compiler Algorithm for CPU Energy Reduction". Proceedings of the ACM

SIGPLAN conference on Programming language design and implementation, San

Diego, California, USA, 2003.

[96] Huang, C.-C. and Nagarajan, V. "ATCache: reducing DRAM cache latency via a

small SRAM tag cache". Proceedings of the 23rd international conference on

Parallel architectures and compilation, Edmonton, AB, Canada, 2014.

[97] Huang, H., Pillai, P. and Shin, K. G. "Design and Implementation of

Power-Aware Virtual Memory". Proceedings of the annual conference on

USENIX Annual Technical Conference, San Antonio, Texas, 2003.

[98] Hur, I. and Lin, C. "A Comprehensive Approach to DRAM Power Management".

Proceedings of the International Symposium on High-Performance Computer

Architecture (HPCA'08), 2008.

[99] Ipek, E., Mutlu, O., Martinez, J. F. and Caruana, R. "Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach". Proceedings of the 35th Annual

International Symposium on Computer Architecture (ISCA'08), 2008.

[100] Isci, C., Buyuktosunoglu, A., Chen, C. Y., Bose, P. and Martonosi, M. "An

Analysis of Efficient Multi-Core Global Power Management Policies: Maximizing

Performance for a Given Power Budget". Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO'39), Dec. 2006,

2006.

[101] Jeon, D., Garcia, S., Louie, C. and Taylor, M. B. "Kismet: Parallel Speedup

Estimates for Serial Programs". Proceedings of the 2011 ACM international

conference on Object oriented programming systems languages and applications,

Portland, Oregon, USA, 2011.

[102] Jevdjic, D., Volos, S. and Falsafi, B. "Die-stacked DRAM caches for servers:

hit ratio, latency, or bandwidth? have it all with footprint cache". Proceedings of the

40th Annual International Symposium on Computer Architecture, Tel-Aviv, Israel,

2013.

[103] Jiang, Y., Zhang, E. Z., Tian, K. and Shen, X. "Is Reuse Distance Applicable to

Data Locality Analysis on Chip Multiprocessors?". Proceedings of the 19th Joint

European Conference on Theory and Practice of Software, International Conference

on Compiler Construction, 2010.

[104] Jung, C., Lim, D., Lee, J. and Han, S. "Adaptive Execution Techniques for

SMT Multiprocessor Architectures". Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, Chicago, IL, USA,

2005.

[105] Justin, M. and Li, J. "Evaluating Row Buffer Locality in Future Non-Volatile

 145

Main Memories". 2012.

[106] Karp, A. H. and Flatt, H. P. "Measuring Parallel Processor Performance".

Commun. ACM, 33(5), pp. 539-543, 1990.

[107] Kendall, D. G. "Stochastic Processes Occurring in the Theory of Queues and

their Analysis by the Method of the Imbedded Markov Chain". The Annals of

Mathematical Statistics, 24(3), pp. 338-354, 1953.

[108] Kgil, T., Roberts, D. and Mudge, T. "Improving NAND Flash Based Disk

Caches". Proceedings of the 35th Annual International Symposium on Computer

Architecture (ISCA'08), 2008.

[109] Kim, M., P., K., Kim, H. and Brett, B. "Predicting Potential Speedup of Serial

Code via Lightweight Profiling and Emulations with Memory Performance Model".

Proceedings of the 26 th IEEE International Parallel and Distributed Processing

Symposium (IPDPS'12), 21-25 May 2012, 2012.

[110] Lebeck, A. R., Fan, X., Zeng, H. and Ellis, C. "Power Aware Page Allocation".

SIGARCH Comput. Archit. News, 28(5), pp. 105-116, 2000.

[111] Lee, B. C., Ipek, E., Mutlu, O. and Burger, D. "Architecting Phase Change

Memory As a Scalable Dram Alternative". SIGARCH Comput. Archit. News, 37(3),

pp. 2-13, 2009.

[112] Lee, C. J., Mutlu, O., Narasiman, V. and Patt, Y. N. "Prefetch-Aware DRAM

Controllers". Proceedings of the 41th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO'41), 2008.

[113] Lee, M., Gupta, V. and Schwan, K. "Software-controlled transparent

management of heterogeneous memory resources in virtualized systems".

Proceedings of the ACM SIGPLAN Workshop on Memory Systems Performance and

Correctness, Seattle, Washington, 2013.

[114] Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M. and Keller, T. W.

"Energy Management for Commercial Servers". Computer, 36(12), pp. 39-48, 2003.

[115] Lefurgy, C., Wang, X. and Ware, M. "Power capping: a prelude to power

shifting". Cluster Computing, 11(2), pp. 183-195, 2008.

[116] Li, D., de Supinski, B. R., Schulz, M., Cameron, K. and Nikolopoulos, D. S.

"Hybrid MPI/OpenMP Power-Aware Computing". Proceedings of the 23th IEEE

International Parallel and Distributed Processing Symposium (IPDPS'09), 2010.

[117] Li, D., Nikolopoulos, D. S., Cameron, K., de Supinski, B. R. and Schulz, M.

"Power-Aware MPI Task Aggregation Prediction for High-End Computing Systems".

Proceedings of the 24th IEEE International Parallel and Distributed Processing

 146

Symposium (IPDPS'10), 2010.

[118] Li, J. and Martinez, J. F. "Dynamic Power-performance Adaptation of Parallel

Computation on Chip Multiprocessors". Proceedings of the International

Symposium on High-Performance Computer Architecture (HPCA'06), 2006.

[119] Li, T., Baumberger, D., Koufaty, D. A. and Hahn, S. "Efficient operating

system scheduling for performance-asymmetric multi-core architectures".

Proceedings of the 2007 ACM/IEEE conference on Supercomputing (SC'07), Reno,

Nevada, 2007.

[120] Li, X., Li, Z., Zhou, Y. and Adve, S. "Performance Directed Energy

Management for Main Memory and Disks". Trans. Storage, 1(3), pp. 346-380,

2005.

[121] Liedtke, J., Haertig, H. and Hohmuth, M. "OS-Controlled Cache Predictability

for Real-Time Systems". Proceedings of the 3rd IEEE Real-Time Technology and

Applications Symposium (RTAS '97), 1997.

[122] Lim, M. Y., Freeh, V. W. and Lowenthal, D. K. "Adaptive, Transparent

Frequency and Voltage Scaling of Communication Phases in MPI Programs".

Proceedings of the 2006 ACM/IEEE conference on Supercomputing (SC'06), Tampa,

Florida, 2006.

[123] Lin, J., Lu, Q., Ding, X., Zhang, Z., Zhang, X. and P., S. "Gaining Insights into

Multicore Cache Partitioning: Bridging the Gap Between Simulation and Real

Systems". Proceedings of the International Symposium on High-Performance

Computer Architecture (HPCA'08), 2008.

[124] Lin, J., Zheng, H., Zhu, Z., David, H. and Zhang, Z. "Thermal Modeling and

Management of DRAM Memory Systems". Proceedings of the 34th Annual

International Symposium on Computer Architecture (ISCA'07), San Diego, California,

USA, 2007.

[125] Lin, J., Zheng, H., Zhu, Z., Gorbatov, E., David, H. and Zhang, Z. "Software

Thermal Management of DRAM memory for multicore Systems". Proceedings of

the 2008 ACM SIGMETRICS international conference on Measurement and modeling

of computer systems, Annapolis, MD, USA, 2008.

[126] Lin, W.-F., Reinhardt, S. K. and Burger, D. "Designing a Modern Memory

Hierarchy with Hardware Prefetching". IEEE Trans. Comput., 50(11), pp.

1202-1218, 2001.

[127] Loh, G. H. "3D-Stacked Memory Architectures for Multi-core Processors".

Proceedings of the 35th Annual International Symposium on Computer Architecture

(ISCA'08), 2008.

 147

[128] Loh, G. H. and Hill, M. D. "Efficiently enabling conventional block sizes for

very large die-stacked DRAM caches". Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture, Porto Alegre, Brazil, 2011.

[129] Majo, Z. and Gross, T. R. "Memory Management in NUMA Multicore Systems:

Trapped between Cache Contention and Interconnect Overhead". Proceedings of the

International Symposium on Memory Management, 2011.

[130] Majo, Z. and Gross, T. R. "Memory system performance in a NUMA multicore

multiprocessor". Proceedings of the 4th Annual International Conference on

Systems and Storage, 2011.

[131] Mandal, A., Fowler, R. and Porterfield, A. "Modeling Memory Concurrency for

Multi-Socket Multi-Core Systems". Performance Analysis of Systems & Software

(ISPASS), 2010.

[132] Marathe, J. and Mueller, F. "Hardware Profile-Guided Automatic Page

Placement for ccNUMA Systems". Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming, New York, New

York, USA, 2006.

[133] Marathe, J., Thakkar, V. and Mueller, F. "Feedback-Directed Page Placement

for ccNUMA via Hardware-Generated Memory Traces". Journal of Parallel and

Distributed Computing, 70(12), pp. 1204-1219, 2010.

[134] Marchetti, M., Kontothanassis, L., Bianchini, R. and Scott, M. L. "Using Simple

Page Placement Policies to Reduce the Cost of Cache Fills in Coherent

Shared-Memory Systems". Proceedings of 9th International Parallel Processing

Symposium 1995.

[135] Marowka, A. "Extending Amdahl's Law for Heterogeneous Computing".

Parallel and Distributed Processing with Applications (ISPA), 2012.

[136] Marowka, A. "Maximizing energy saving of dual-architecture processors using

DVFS". J. Supercomput., 68(3), pp. 1163-1183, 2014.

[137] McCalpin, J. "STREAM: Sustainable Memory Bandwidth in High Performance

Computers". 1995.

[138] McCalpin, J. D. "Memory Bandwidth and Machine Balance in Current High

Performance Computers". IEEE Technical Committee on Computer Architecture

(TCCA) Newsletter, pp., 1995.

[139] McCurdy, C. and Vetter, J. S. "Memphis: Finding and fixing NUMA-related

performance problems on multi-core platforms". Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and Software, 2010.

 148

[140] McKee, S. A. "Reflections on the Memory Wall". Proceedings of the 1st

conference on Computing frontiers, Ischia, Italy, 2004.

[141] McVoy, L. and Staelin, C. "Lmbench: Portable Tools for Performance

Analysis". Proceedings of the 1996 Annual Conference on USENIX Annual

Technical Conference, 1996.

[142] Meza, J., Chang, J., Yoon, H., Mutlu, O. and Ranganathan, P. "Enabling

Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache

Management". IEEE Comput. Archit. Lett., 11(2), pp. 61-64, 2012.

[143] Mizell, D. and Maschhoff, K. "Early Experiences with Large-Scale Cray XMT

Systems". Proceedings of the 23th IEEE International Parallel and Distributed

Processing Symposium (IPDPS'09)

2009.

[144] Mogul, J. C., Argollo, E., Shah, M. and Faraboschi, P. "Operating System

Support for NVM+DRAM Hybrid Main Memory". Proceedings of the 12th

Conference on Hot Topics in Operating Systems, 2009.

[145] Molka, D., Hackenberg, D., Schone, R. and Muller, M. S. "Memory

Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor

System". Proceedings of the 18th International Conference on Parallel

Architectures and Compilation Techniques (PACT'09), 2009.

[146] Mucci, P. J., Browne, S., Deane, C. and Ho, G. "PAPI: A Portable Interface to

Hardware Performance Counters". Proceedings of the Department of Defense

HPCMP Users Group Conference, 1999.

[147] Mutlu, O. and Moscibroda, T. "Parallelism-Aware Batch Scheduling:

Enhancing both Performance and Fairness of Shared DRAM Systems". Proceedings

of the 35th Annual International Symposium on Computer Architecture (ISCA'08),

2008.

[148] Mutlu, O. and Moscibroda, T. "Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors". Proceedings of the 40th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO'40), 2007.

[149] Nikolopoulos, D. S., Papatheodorou, T. S., Polychronopoulos, C. D., Labarta, J.

and Ayguad, E. "Leveraging Transparent Data Distribution in OpenMP via

User-Level Dynamic Page Migration". Proceedings of the Third International

Symposium on High Performance Computing, 2000.

[150] Nikolopoulos, D. S., Papatheodorou, T. S., Polychronopoulos, C. D., Labarta, J.

and Ayguade, E. "User-Level Dynamic Page Migration for Multiprogrammed

Shared-Memory Multiprocessors". International Conference on Parallel

Processing(ICPP'00), 2000.

 149

[151] Nikolopoulos, D. S., Papatheodorou, T. S., Polychronopoulos, C. D., Labarta, J.

and Ayguadé, E. "UPMLIB: A Runtime System for Tuning the Memory Performance

of OpenMP Programs on Scalable Shared-Memory Multiprocessors". Proceedings of

the 5th International Workshop on Languages, Compilers, and Run-Time Systems for

Scalable Computers, 2000.

[152] Pawlowski, J. T. "Hybrid memory cube (HMC)". 2011.

[153] Quan, C. "WATS: Workload-Aware Task Scheduling in Asymmetric

Multi-core Architectures". Proceedings of the 26th IEEE International Parallel and

Distributed Processing Symposium (IPDPS'12), 2012.

[154] Qureshi, M. K., Franceschini, M. M., Jagmohan, A. and Lastras, L. A. "PreSET:

Improving performance of phase change memories by exploiting asymmetry in write

times". Proceedings of the 39th Annual International Symposium on Computer

Architecture (ISCA'12).

[155] Qureshi, M. K., Franceschini, M. M., Lastras-Montaño, L. A. and Karidis, J. P.

"Morphable Memory System: A Robust Architecture for Exploiting Multi-level Phase

Change Memories". SIGARCH Comput. Archit. News, 38(3), pp. 153-162, 2010.

[156] Qureshi, M. K., Karidis, J., Franceschini, M., Srinivasan, V., Lastras, L. and

Abali, B. "Enhancing Lifetime and Security of PCM-based Main Memory with

Start-gap Wear Leveling". Proceedings of the 42th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO'42), 2009.

[157] Qureshi, M. K. and Loh, G. H. "Fundamental Latency Trade-off in Architecting

DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple and Practical

Design". Proceedings of the 2012 45th Annual IEEE/ACM International Symposium

on Microarchitecture, Vancouver, B.C., CANADA, 2012.

[158] Qureshi, M. K., Srinivasan, V. and Rivers, J. A. "Scalable High Performance

Main Memory System Using Phase-Change Memory Technology". Proceedings of

the 36th annual international symposium on Computer architecture (ISCA'09), Austin,

TX, USA, 2009.

[159] Ramos, L. E., Gorbatov, E. and Bianchini, R. "Page Placement in Hybrid

Memory Systems". Proceedings of the 26th ACM International Conference on

Supercomputing (ICS'11), Tucson, Arizona, USA, 2011.

[160] Ribeiro, C. P., Mehaut, J. F., Carissimi, A., Castro, M. and Fernandes, L. G.

"Memory Affinity for Hierarchical Shared Memory Multiprocessors". Computer

Architecture and High Performance Computing, 2009. SBAC-PAD '09. 21st

International Symposium on, 2009/oct.

[161] Rodrigues, R., Annamalai, A., Koren, I. and Kundu, S. "Scalable Thread

Scheduling in Asymmetric Multicores for Power Efficiency". Proceedings of IEEE

 150

24th International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD'12), 2012.

[162] Rong, G., Xizhou, F. and Cameron, K. W. "Modeling and evaluating

energy-performance efficiency of parallel processing on multicore based power aware

systems". Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International

Symposium on, 23-29 May 2009, 2009.

[163] Rong, G., Xizhou, F., Wu-chun, F. and Cameron, K. W. "CPU MISER: A

Performance-Directed, Run-Time System for Power-Aware Clusters". International

Conference on Parallel Processing(ICPP'07)

2007.

[164] Rosenfeld, P., Cooper-Balis, E. and Jacob, B. "DRAMSim2: A Cycle Accurate

Memory System Simulator". Computer Architecture Letters, 10(1), pp. 16-19, 2011.

[165] Saripalli, V., Guangyu, S., Mishra, A., Yuan, X., Datta, S. and Narayanan, V.

"Exploiting Heterogeneity for Energy Efficiency in Chip Multiprocessors". Emerging

and Selected Topics in Circuits and Systems, IEEE Journal on, 1(2), pp. 109-119,

2011.

[166] Sawalha, L. and Barnes, R. D. "Phase-Based Scheduling and Thread Migration

for Heterogeneous Multicore Processors". Proceedings of the 21th International

Conference on Parallel Architectures and Compilation Techniques (PACT'12),

Minneapolis, Minnesota, USA, 2012.

[167] Sawalha, L. and Barnes, R. D. "Energy-Efficient Phase-Aware Scheduling for

Heterogeneous Multicore Processors". Green Technologies Conference, 2012 IEEE,

2012.

[168] Scheurich, C. and Dubois, M. "Dynamic Page Migration in Multiprocessors

with Distributed Global Memory". IEEE Transactions on Computers, 38(8), pp.

1154-1163, 1989.

[169] Schuff, D. L., Kulkarni, M. and Pai, V. S. "Accelerating Multicore Reuse

Distance Analysis with Sampling and Parallelization". Proceedings of the 19th

International Conference on Parallel Architectures and Compilation Techniques

(PACT'10), 2010.

[170] Shao, Y. S. and Brooks, D. "Energy characterization and instruction-level

energy model of Intel's Xeon Phi processor". Low Power Electronics and Design

(ISLPED), 2013.

[171] Shen, X., Shaw, J., Meeker, B. and Ding, C. "Locality Approximation Using

Time". Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 2007.

 151

[172] Sheu, S.-S., Chang, M.-F., Lin, K.-F., Wu, C.-W., Chen, Y.-S., Chiu, P.-F., Kuo,

C.-C., Yang, Y.-S., Chiang, P.-C., Lin, W.-P., Lin, C.-H., Lee, H.-Y., Gu, P.-Y.,

Wang, S.-M., Chen, F. T., Su, K.-L., Lien, C.-H., Cheng, K.-H., Wu, H.-T., Ku, T.-K.,

Kao, M.-J. and Tsai, M.-J. "A 4Mb embedded SLC resistive-RAM macro with 7.2ns

read-write random-access time and 160ns MLC-access capability". Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2011.

[173] Shuaiwen, S., Chun-Yi, S., Rong, G., Vishnu, A. and Cameron, K. W.

"Iso-Energy-Efficiency: An Approach to Power-Constrained Parallel Computation".

Proceedings of the 25th IEEE International Parallel and Distributed Processing

Symposium (IPDPS'11), 2011.

[174] Singh, K., Curtis-Maury, M., McKee, S. A., Blagojević, F., Nikolopoulos, D. S.,

de Supinski, B. R. and Schulz, M. "Comparing Scalability Prediction Strategies on an

SMP of CMPs". Proceedings of the 16th international Euro-Par conference on

Parallel processing, 2010.

[175] Snavely, A. and Tullsen, D. M. "Symbiotic Jobscheduling for a Simultaneous

Multithreaded Processor". SIGARCH Comput. Archit. News, 28(5), pp. 234-244,

2000.

[176] Song, S., Su, C., Rountree, B. and Cameron, K. W. "A Simplified and Accurate

Model of Power-Performance Efficiency on Emergent GPU Architectures".

Proceedings of the 27th IEEE International Parallel and Distributed Processing

Symposium (IPDPS'13), 2013.

[177] Stonebraker, M., Frew, J., Gardels, K. and Meredith, J. "The Sequoia 2000

Benchmark". Proceedings of the 1993 ACM SIGMOD International Conference on

Management of Data, 1993.

[178] Su, C., Li, D., Nikolopoulos, D. S., Cameron, K. W., Supinski, B. R. d. and

Leon, E. A. "Model-based, memory-centric performance and power optimization on

NUMA multiprocessors". Proceedings of the 2012 IEEE International Symposium

on Workload Characterization (IISWC'12), 2012.

[179] Su, C., Li, D., Nikolopoulos, D. S., Grove, M., Cameron, K. and Supinski, B. R.

d. "Critical path-based thread placement for NUMA systems". SIGMETRICS Perform.

Eval. Rev., 40(2), pp. 106-112, 2012.

[180] Suleman, M. A., Qureshi, M. K. and Patt, Y. N. "Feedback-Driven Threading:

Power-Efficient and High-Performance Execution of Multi-Threaded Workloads on

CMPs". SIGOPS Oper. Syst. Rev., 42(2), pp. 277-286, 2008.

[181] Sun, X.-H. and Ni, L. M. "Another View on Parallel Speedup". Proceedings

of the 1990 ACM/IEEE conference on Supercomputing (SC'90), New York, New

York, USA, 1990.

 152

[182] Sun, X.-H. and Ni, L. M. "Scalable Problems and Memory-Bounded Speedup".

J. Parallel Distrib. Comput., 19(1), pp. 27-37, 1993.

[183] Taecheol, O., Hyunjin, L., Kiyeon, L. and Sangyeun, C. "An Analytical Model

to Study Optimal Area Breakdown between Cores and Caches in a Chip

Multiprocessor". IEEE Computer Society Annual Symposium on VLSI, 2009.

[184] Tam, D., Azimi, R. and Stumm, M. "Thread Clustering: Sharing-Aware

Scheduling on SMP-CMP-SMT Multiprocessors". Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007.

[185] Tam, D. K., Azimi, R., Soares, L. B. and Stumm, M. "RapidMRC:

Approximating L2 Miss Rate Curves on Commodity Systems for Online

Optimizations". Proceedings of the 14th international conference on Architectural

support for programming languages and operating systems, Washington, DC, USA,

2009.

[186] Terboven, C., an Mey, D., Schmidl, D., Jin, H. and Reichstein, T. "Data and

Thread Affinity in OpenMP Programs". Proceedings of the 2008 Workshop on

Memory Access on Future Processors: A Solved Problem?, 2008.

[187] Tolentino, M. and Cameron, K. W. "The Optimist, the Pessimist, and the Global

Race to Exascale in 20 Megawatts". Computer, 45(1), pp. 95-97, 2012.

[188] Tolentino, M. E., Turner, J. and Cameron, K. W. "Memory-MISER: A

Prformance-Constrained Runtime System for Power-Scalable Clusters".

Proceedings of the 4th international conference on Computing frontiers, Ischia,

Italy, 2007.

[189] Tomov, S., Dongarra, J. and Baboulin, M. "Towards dense linear algebra for

hybrid GPU accelerated manycore systems". Parallel Comput., 36(5-6), pp.

232-240, 2010.

[190] Tong, L., Brett, P., Knauerhase, R., Koufaty, D., Reddy, D. and Hahn, S.

"Operating System Support for Overlapping-ISA Heterogeneous Multi-Core

Architectures". Proceedings of the International Symposium on High-Performance

Computer Architecture (HPCA'10), 2010.

[191] Treibig, J., Hager, G. and Wellein, G. "LIKWID: A lightweight

performance-oriented tool suite for x86 multicore environments". Proceedings of

PSTI2010, the First International Workshop on Parallel Software Tools and Tool

Infrastructures, 2010.

[192] Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi, N. P.,

Fiorentino, M., Davis, A., Binkert, N., Beausoleil, R. G. and Ahn, J. H. "Corona:

System Implications of Emerging Nanophotonic Technology". SIGARCH Comput.

Archit. News, 36(3), pp. 153-164, 2008.

 153

[193] Verghese, B., Devine, S., Gupta, A. and Rosenblum, M. "Operating System

Support for Improving Data Locality on CC-NUMA Compute Servers". SIGOPS

Oper. Syst. Rev., 30(5), pp. 279-289, 1996.

[194] Vivek, P., Jiang, W., Yuanyuan, Z. and Bianchini, R. "DMA-Aware Memory

Energy Management". Proceedings of the International Symposium on

High-Performance Computer Architecture (HPCA'06), 2006.

[195] Voss, M. and Eigenmann, R. "Reducing Parallel Overheads through Dynamic

Serialization". Proceedings of 13th International and 10th Symposium on Parallel

and Distributed Processing, IPSS, 1999.

[196] Wang, B., Wu, B., Li, D., Shen, X., Yu, W., Jiao, Y. and Vetter, J. S.

"Exploring Hybrid Memory for GPU Energy Efficiency Through Software-hardware

Co-design". Proceedings of the 22th International Conference on Parallel

Architectures and Compilation Techniques (PACT'13), 2013.

[197] Weinberg, J., McCracken, M. O., Strohmaier, E. and Snavely, A. "Quantifying

Locality In The Memory Access Patterns of HPC Applications". Proceedings of the

2005 ACM/IEEE Conference on Supercomputing(SC'05), 2005.

[198] Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C.,

Mattina, M., Miao, C.-C., III, J. F. B. and Agarwal, A. "On-Chip Interconnection

Architecture of the Tile Processor". IEEE Micro, 27(5), pp. 15-31, 2007.

[199] Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B.,

Asheghi, M. and Goodson, K. E. "Phase Change Memory". Proceedings of the

IEEE, 98(12), pp. 2201-2227, 2010.

[200] Wonyoung, K., Gupta, M. S., Gu-Yeon, W. and Brooks, D. "System Level

Analysis of Fast, per-core DVFS Using on-Chip Switching Regulators". Proceedings

of the International Symposium on High-Performance Computer Architecture

(HPCA'08), 2008.

[201] Wu, M. and Zwaenepoel, W. "eNVy: A Non-volatile, Main Memory Storage

System". SIGPLAN Not., 29(11), pp. 86-97, 1994.

[202] Wu, Q., Martonosi, M., Clark, D. W., Reddi, V. J., Connors, D., Wu, Y., Lee, J.

and Brooks, D. "Dynamic-Compiler-Driven Control for Microprocessor Energy and

Performance". Micro, IEEE, 26(1), pp. 119-129, 2006.

[203] Xiaowen, C., Zhonghai, L., Jantsch, A. and Shuming, C. "Speedup Analysis of

Data-Parallel Applications on Multi-core NoCs". ASIC. ASICON '09. IEEE 8th

International Conference on, 2009.

[204] Yang, B.-D., Lee, J.-E., Kim, J.-S., Cho, J., Lee, S.-Y. and Yu, B.-G. "A Low

Power Phase-Change Random Access Memory using a Data-Comparison Write

 154

Scheme". Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA'07), 2007.

[205] Yang, R., Antony, J., Janes, P. P. and Rendell, A. P. "Memory and Thread

Placement Effects as a Function of Cache Usage: A Study of the Gaussian Chemistry

Code on the SunFire X4600 M2". Parallel Architectures, Algorithms, and Networks,

2008. I-SPAN 2008. International Symposium on, 2008.

[206] Yao, E., Bao, Y., Tan, G. and Chen, M. "Extending Amdahl's Law in the

Multicore Era". SIGMETRICS Perform. Eval. Rev., 37(2), pp. 24-26, 2009.

[207] Yongsoo, J., Yongseok, C. and Hojun, S. "Energy Exploration And reduction of

SDRAM Memory Systems". Proceedings of 39th Design Automation Conference,

2002.

[208] Yoongu, K., Dongsu, H., Mutlu, O. and Harchol-Balter, M. "ATLAS: A

Scalable and High-Performance Scheduling Algorithm for Multiple Memory

Controllers". Proceedings of the International Symposium on High-Performance

Computer Architecture (HPCA'10), 2010.

[209] Zhang, W. and Li, T. "Exploring Phase Change Memory and 3D Die-Stacking

for Power/Thermal Friendly, Fast and Durable Memory Architectures". Proceedings

of the 18th international conference on Parallel architectures and compilation

techniques (PCAT'09).

[210] Zhang, X., Dwarkadas, S. and Shen, K. "Towards Practical Page

Coloring-Based Multicore Cache Management". Proceedings of the 4th ACM

European conference on Computer systems, Nuremberg, Germany, 2009.

[211] Zhang, Y., Burcea, M., Cheng, V., Ho, R. and Voss, M. "An Adaptive OpenMP

Loop Scheduler for Hyperthreaded SMPs". Proceedings of International

Conference on Parallel and Distributed Computing Systems, 2004.

[212] Zhang, Y. and Voss, M. "Runtime Empirical Selection of Loop Schedulers on

Hyperthreaded SMPs". Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS'05) - Papers - Volume 01, 2005.

[213] Zheng, H., Lin, J., Zhang, Z., Gorbatov, E., David, H. and Zhu, Z. "Mini-rank:

Adaptive DRAM Architecture for Improving Memory Power Efficiency".

Proceedings of the 41th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO'41), 2008.

[214] Zheng, H., Lin, J., Zhang, Z. and Zhu, Z. "Decoupled DIMM: building

high-bandwidth memory system using low-speed DRAM devices". Proceedings of

the 37th annual international symposium on Computer architecture (ISCA'10), 2009.

[215] Zheng, H. and Zhu, Z. "Power and Performance Trade-Offs in Contemporary

 155

DRAM System Designs for Multicore Processors". IEEE Transactions on Computers,

59(8), pp. 1033-1046, 2010.

[216] Zhou, P., Zhao, B., Yang, J. and Zhang, Y. "A Durable and Energy Efficient

Main Memory Using Phase Change Memory Technology". SIGARCH Comput. Archit.

News, 37(3), pp. 14-23, 2009.

[217] Zhou, Y., Philbin, J. and Li, K. "The Multi-Queue Replacement Algorithm for

Second Level Buffer Caches". Proceedings of the General Track: 2002 USENIX

Annual Technical Conference, 2001.

[218] Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K. and Wilkes, J. "Hibernator:

Helping Disk arrays Sleep through the Winter". Proceedings of the twentieth ACM

symposium on Operating systems principles, Brighton, United Kingdom, 2005.

[219] Zhuravlev, S., Blagodurov, S. and Fedorova, A. "Addressing Shared Resource

Contention in Multicore Processors via Scheduling". Proceedings of the Fifteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, 2010.

